COMUNE DI FIORANO MODENESE

PROVINCIA DI MODENA

PERMESSO DI COSTRUIRE IN DEROGA PER PUBBLICA UTILITÀ PER L'INSTALLAZIONE DI CABINA E ANTENNA PER SERVIZI DI TELECOMUNICAZIONE

RELAZIONE COMPLESSIVA SULLE STRUTTURE

- 1. Progetto Architettonico;
- 2. Relazione di calcolo strutturale;
- 3. Relazione sui materiali;
- 4. Elaborati grafici esecutivi;
- 5. Piano di manutenzione;
- 6. Relazioni specialistiche sui risultati sperimentali;
- 7. Elaborati grafici del rilievo geometrico-strutturale (ES);
- 8. Valutazione della sicurezza (ES);
- 9. Documentazione fotografica (ES):

RELAZIONE DI CALCOLO

<u>Proprietà</u>: Sig.re Bondi Antonella, Bondi Loretta, Bondi Luisa, Bondi Paola <u>Immobile sito in</u>: Via Del Ruvinello, Fiorano Modenese (Mo) - F. 13 mapp. 178

Vignola, Febbraio 2019

IL TECNICO

Ing. Roberto Luppi

via ca' dei Lazzarini, 73 - 41058 Vignola (MO) tel. 059/776360 - fax 059/7702770 - cell. 335/6320146 e-mail: ingluppi@tin.it

STUDIO TECNICO ING. ROBERTO LUPPI

0. INDICE DEGLI ELABORATI

0. INDICE DEGLI ELABORATI	3
1. PROGETTO ARCHITETTONICO	5
2. RELAZIONE DI CALCOLO STRUTTURALE	5
2.1. ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE	5
2.1.1. DESCRIZIONE DEL CONTESTO EDILIZIO E DELLE CARATTERISTICHE DEL SITO	5
2.1.2. DESCRIZIONE GENERALE DELLA STRUTTURA E DELL'INTERVENTO	5
2.1.3. NORMATIVA TECNICA	6
2.1.3.1 ALTRE NORME E DOCUMENTI TECNICI INTEGRATIVI	6
2.1.4. DEFINIZIONE DEI PARAMETRI DI PROGETTO CHE CONCORRONO ALLA DEFINIZIONE	
DELL'AZIONE SISMICA DEL SITO	7
2.1.5. DESCRIZIONE DEI MATERIALI CONSIDERATI	7
2.1.6. ILLUSTRAZIONE DEI CRITERI DI PROGETTAZIONE E DI MODELLAZIONE	10
2.1.7. PRINCIPALI COMBINAZIONI INDAGATE	33
2.1.8. METODO DI ANALISI ESEGUITO	37
2.1.9. SINTESI DEI PRINCIPALI RISULTATI	38
2.1.9.1. RISULTATI DELL'ANALISI SISMICA	38
2.1.9.2. PRINCIPALI CONFIGURAZIONI DEFORMATE	38
2.1.9.3. INVILUPPO DELLE SOLLECITAZIONI MAGGIORMENTE SIGNIFICATIVE	39
2.1.10. SINTESI DELLE VERIFICHE DI SICUREZZA	
2.1.10.1. VERIFICHE SLU	42
2.1.11. CARATTERISTICHE E AFFIDABILITA' DEL CODICE DI CALCOLO	
2.1.12. VERIFICHE SULLE FONDAZIONI	45
2.1.13. ES CATEGORIA DI INTEVENTO PREVISTA	
22. TABULATI DI CALCOLO	50
2.2.1. PRINCIPALI RISULTATI	50
2.2.2 TABULATI VERIFICHE AGLI STATI LIMITE ULTIMI	57
3. RELAZIONE SUI MATERIALI	64
3.1. ELENCO DEI MATERIALI IMPIEGATI E LORO MODALITÀ DI POSA IN OPERA	
4. ELABORATI GRAFICI ESECUTIVI E PARTICOLARI COSTRUTTIVI	
4.1. ELABORATI GRAFICI GENERALI	
4.2. PARTICOLARI COSTRUTTIVI	92
5. PIANO DI MANUTENZIONE DELLA PARTE STRUTTURALE DELL'OPERA	92
6. RELAZIONE SUI RISULTATI SPERIMENTALI: INDAGINI SPECIALISTICHE	
6.1. RELAZIONE GEOLOGICA: INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO	94
6.2. RELAZIONE GEOTECNICA: INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE DEL VOLUME SIGNIFICATIVO DI TEF	RENO94
6.3. ES RELAZIONE SULLA CARATTERIZZAZIONE MECCANICA DEI MATERIALI	106
6.4. RELAZIONE SULLA MODELLAZIONE SISMICA CONCERNENTE "LA PERICOLOSITA" SISMICA DI BASE" DEL SITO DI	
COSTRUZIONE	
7. ELABORATI GRAFICI DEL RILIEVO GEOMETRICO-STRUTTURALE	107

7.1. ES RILIEVO GEOMETRICO-STRUTTURALE	.107
72. ES QUADRO FESSURATIVO E/O DI DEGRADO	.107
8. VALUTAZIONE DELLA SICUREZZA	.107
8.1. ES ANALISI STORICO-CRITICA ED ESITO DEL RILIEVO GEOMETRICO-STRUTTURALE	.107
8.1.1. ANALISI STORICO-CRITICA	.107
8.1.2. ESITO DEL RILIEVO GEOMETRICO-STRUTTURALE	.107
82. ES LIVELLI DI CONOSCENZA E FATTORI DI CONFIDENZA	.107
8.3. ES RELAZIONE SULLA VERIFICA DELLA STRUTTURA PRIMA DELL'INTERVENTO	.107
8.4. ES RELAZIONE SULLA VERIFICA DELLA STRUTTURA DOPO L'INTERVENTO	.107
9. DOCUMENTAZIONE FOTOGRAFICA	.107

1. PROGETTO ARCHITETTONICO

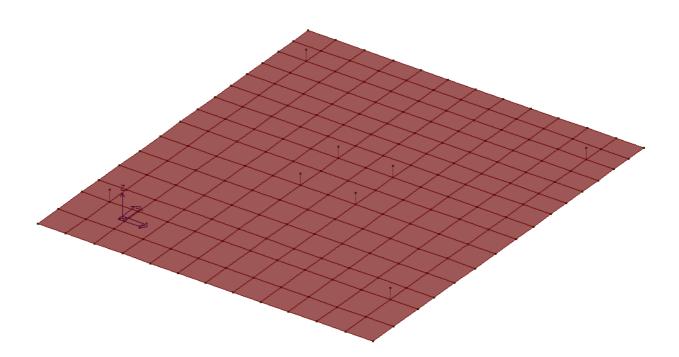
Si vedano gli elaborati grafici architettonici allegati.

2. RELAZIONE DI CALCOLO STRUTTURALE

2.1. ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE

2.1.1. DESCRIZIONE DEL CONTESTO EDILIZIO E DELLE CARATTERISTICHE DEL SITO

La presente relazione riguarda la costruzione di una platea di fondazione e di un traliccio radio sito in via del Ruvinello, nel comune di Fiorano Modenese (MO), Fg.13 Map.178. Si riportano quindi le analisi dei carichi, le caratteristiche, le azioni di progetto e le verifiche per gli elementi che definiscono la struttura.


2.1.2. DESCRIZIONE GENERALE DELLA STRUTTURA E DELL'INTERVENTO

Il progetto prevede la realizzazione di una platea di fondazione in cemento armato con calcestruzzo di spessore 40cm. Sarà armata con doppia orditura superiore e inferiore composta da Ø16/20 e le opere di fondazione saranno completate con cordoli di irrigidimento a collegamento in cemento armato, sia in spessore di platea che rialzati per garantire il trasferimento dei carichi della sovrastruttura alla platea. La struttura in elevazione è un traliccio metallico di supporto ad antenne ed il progetto a firma di altro tecnico, è allegato alla presente trasmissione.

Il dimensionamento della platea è stato eseguito mediante l'applicazione delle reazioni vincolari trasmesse dalla sovrastruttura e fornite dal progettista.

X	- INTERVENTI DI NUOVA COSTRUZIONE	I valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
	- INTERVENTI DI ADEGUAMENTO SISMICO	Nei casi per i quali l'intervento previsto è configurabile come adeguamento sismico, i valori

	di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
-INTERVENTO DI MIGLIORAMENTO SISMICO -INTERVENTO LOCALE O RIPARAZIONE -INTERVENTO SU BENI DI INTERESSE CULTURALE, IN ZONE A RISCHO SISMICO (COMMA 4, ART. 29,, d.Lgs. 22/01/2004, n° 42)	L'intervento previsto non è configurabile come adeguamento sismico, i valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
-INTERVENTO DI MIGLIORAMENTO SISMICO -INTERVENTO LOCALE O RIPARAZIONE -INTERVENTO SU BENI DI INTERESSE CULTURALE, IN ZONE A RISCHO SISMICO (COMMA 4, ART. 29,, d.Lgs. 22/01/2004, n° 42)	L'intervento previsto non è configurabile come adeguamento sismico, i valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni; tuttavia per quanto concerne i carichi permanenti, in relazione all'accurato rilievo geometrico - strutturale e dei materiali sviluppato, si adotta coefficiente parziale modificato γ_G a seguito descritto e giustificato.

2.1.3. NORMATIVA TECNICA

- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 2 febbraio 2009 n.617
- 3. L.R. 19/2008

2.1.3.1 ALTRE NORME E DOCUMENTI TECNICI INTEGRATIVI

- 1. C.N.R. 10011
- 2. D.G.R. 1373/2011 3. D.G.R. 1071/2010 4. D.G.R. 687/2011

2.1.4. DEFINIZIONE DEI PARAMETRI DI PROGETTO CHE CONCORRONO ALLA DEFINIZIONE DELL'AZIONE SISMICA DEL SITO

Si rimanda alla relazione della sovrastuttura.

2.1.5. DESCRIZIONE DEI MATERIALI CONSIDERATI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza	Fattore di confidenza specifico per materiale; (è
FC m	riportato solo se diverso da quello globale della
	struttura)
Fattore di confidenza	Fattore di confidenza specifico per l'armatura (è
FC a	riportato solo se diverso da quello globale della
	struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste
	non lineari
Massima compressione	Massima tensione di compressione per aste non
	lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	cement		
	0		
	armato		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da
			utilizzare nello stress block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento

		Resistenza fd Resistenza fd (>40) Tensione ammissibile	Resistenza di calcolo per SL CNR-UNI 10011 Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile (>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratur		
	а		
		Muratura consolidata Incremento resistenza	Muratura per la quale si prevedono interventi di rinforzo" Incremento conseguito in termini di resistenza
		Incremento rigidezza	Incremento conseguito in termini di rigidezza
		Resistenza f	Valore della resistenza a compressione
		Resistenza fv0	Valore della resistenza a taglio in assenza di tensioni normali
		Resistenza fh	Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione orizzontale
		Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le travi
		Resistenza ft	Valore della resistenza a trazione per fessurazione diagonale
		Resistenza fvlim	Valore della massima resistenza a taglio
		Resistenza fbt	Valore della resistenza a trazione dei blocchi
		Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
		Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

L'intervento in progetto presenta i seguenti materiali:

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
3	Calcestruzzo Classe C28/35			3.260e+05	0.20	1.358e+05	2.50e-03	1.00e-05	
	Resistenza Rc	350.0							
	Resistenza fctm		28.4						
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
47	acciaio inf. rigi.			2.100e+09	0.30	8.077e+08	7.80e-03	1.00e-05	
	Tensione ft	3600.0							

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
	Resistenza fd	2350.0							
	Resistenza fd (>40)	2100.0							
	Tensione ammissibile	1600.0							
	Tensione ammissibile (>40)	1400.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

Pilastri acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
Metodo di calcolo 2-2	Assegnato	Assegnato				
2-2 Beta assegnato	2.00	2.00				
2-2 Beta * L assegnato [cm]	0.0	0.0				
Metodo di calcolo 3-3	Assegnato	Assegnato				
3-3 Beta assegnato	2.00	2.00				
3-3 Beta * L assegnato [cm]	0.0	0.0				
1-1 Beta assegnato	1.00	1.00				
1-1 Beta * L assegnato [cm]	0.0	0.0				
Generalità						
Coefficiente gamma M0	1.05	1.05				
Coefficiente gamma M1	1.05	1.05				
Coefficiente gamma M2	1.25	1.25				
Effetti del 2 ordine	Si	Si				
Momenti equivalenti	Si	Si				
Usa condizioni I e II	Si	Si				

Gusci c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Armatura						
Inclinazione Ax [gradi]	0.0	0.0				
Angolo Ax-Ay [gradi]	90.00	90.00				
Minima tesa	0.31	0.10				
Massima tesa	0.78	0.78				
Maglia unica centrale	No	No				
Copriferro [cm]	2.00	3.00				
Maglia x						
diametro	10	16				
passo	20	20				
diametro aggiuntivi	12	16				
Maglia y						
diametro	10	16				
passo	20	20				
diametro aggiuntivi	12	16				
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00				
Tipo acciaio	tipo C	tipo C				
Coefficiente gamma s	1.15	1.15				
Coefficiente gamma c	1.50	1.50				
Verifiche con N costante	Si	Si				
Applica SLU da DIN	No	No				
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50				
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00				
Rapporto omogeneizzazione N	15.00	15.00				
Massimo rapporto area compressa/tesa	1.00	1.00				
Resistenza al fuoco						
3- intradosso	No	No				
3+ estradosso	No	No				
Tempo di esposizione R	15	15				

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetta a filo	No	No				
Af inf: da q*L*L /	0.0	0.0				
Armatura						
Minima tesa	0.31	0.31				
Minima compressa	0.31	0.31				
Massima tesa	0.78	0.78				

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Da sezione	Si	Si				
Usa armatura teorica	No	No				
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00				
Tensione fy staffe [daN/cm2]	4500.00	4500.00				
Tipo acciaio	tipo C	tipo C				
Coefficiente gamma s	1.15	1.15				
Coefficiente gamma c	1.50	1.50				
Verifiche con N costante	Si	Si				
Fattore di ridistribuzione	0.0	0.0				
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander				
Incrudimento acciaio	5.000e-03	5.000e-03				
Fattore lambda	1.00	1.00				
epsilon max,s	4.000e-02	4.000e-02				
epsilon cu2	4.500e-03	4.500e-03				
epsilon c2	0.0	0.0				
epsilon cy	0.0	0.0				
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50				
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00				
Rapporto omogeneizzazione N	15.00	15.00				
Massimo rapporto area compressa/tesa	1.00	1.00				
Staffe						
Diametro staffe	0.0	0.0				
Passo minimo [cm]	4.00	10.00				
Passo massimo [cm]	30.00	30.00				
Passo raffittito [cm]	15.00	15.00				
Lunghezza zona raffittita [cm]	50.00	50.00				
Ctg(Teta) Max	2.50	2.50				
Percentuale sagomati	0.0	0.0				
Luce di taglio per GR [cm]	1.00	1.00				
Adotta scorrimento medio	No	No				
Torsione non essenziale inclusa	Si	Si				

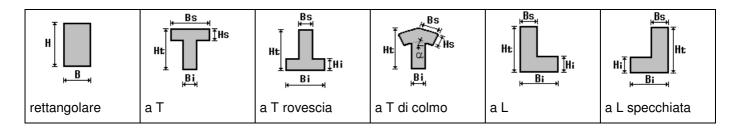
2.1.6. ILLUSTRAZIONE DEI CRITERI DI PROGETTAZIONE E DI MODELLAZIONE

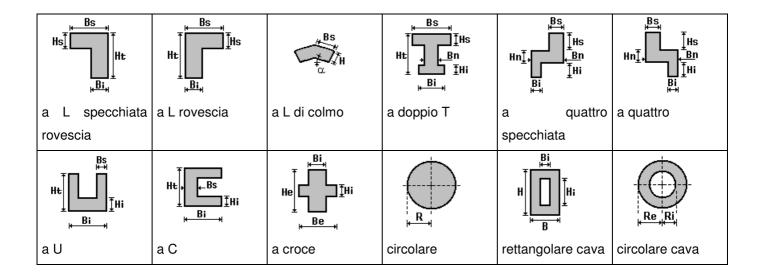
Modellazione della geometria e proprietà meccaniche:							
nodi	216						
elementi D2 (per aste, travi, pilastri)	89						
elementi D3 (per pareti, platee, gusci)	180						
elementi solaio	0						
elementi solidi	0						
Dimensione del modello strutt	urale [cm]:						
X min =	-154.00						
Xmax =	453.50						
Ymin =	0.00						
Ymax =	700.00						
Zmin =	-60.00						
Zmax =	-40.00						
Strutture verticali:							
Elementi di tipo asta	NO						
Pilastri	SI						
Pareti	NO						
Setti (a comportamento membranale)	NO						
Strutture non verticali:							
Elementi di tipo asta	NO						
Travi	SI						
Gusci	NO						
Membrane	NO						

Orizzontamenti:	
Solai con la proprietà piano rigido	NO
Solai senza la proprietà piano rigido	NO
Tipo di vincoli:	
Nodi vincolati rigidamente	NO
Nodi vincolati elasticamente	NO
Nodi con isolatori sismici	NO
Fondazioni puntuali (plinti/plinti su palo)	NO
Fondazioni di tipo trave	NO
Fondazioni di tipo platea	SI
Fondazioni con elementi solidi	NO

MODELLAZIONE STRUTTURA

MODELLAZIONE DELLE SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:


- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	Rettangolare cava: b=70	139.00	0.0	0.0	1.679e+05	1.119e+05	1.119e+05	3197.33	3197.33	3622.75	3622.75
	h=70 bi=69 hi=69										
3	Rettangolare: b=60 h=40	2400.00	2000.00	2000.00	7.424e+05	7.200e+05	3.200e+05	2.400e+04	1.600e+04	3.600e+04	2.400e+04

MODELLAZIONE STRUTTURA: NODO

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
Х	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

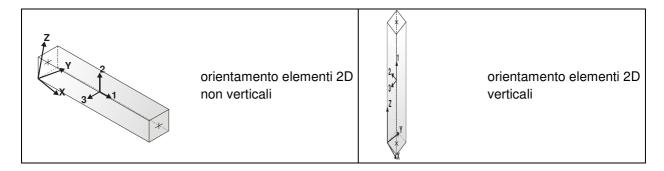
Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo

	TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che
	lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale $(1, 2,)$ fanno riferimento alle tipologie:
	plinto, palo, plinto su pali,) che è collegato al nodo.
	(ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY,
	TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Cm	Nodo	X	Υ	Z	Nodo	X	Υ	Z	Nodo	X	Υ	Z
4 0.0 0.0 5.00 5 149.8 369.5 -60.0 6 403.5 115.5 -60.0 10 0.0 369.5 -60.0 11 299.5 369.5 -60.0 12 453.5 700.0 -60.0 11 149.8 0.0 -60.0 14 149.8 459.5 -60.0 15 0.0 52.8 -60.0 16 49.9 115.5 -60.0 17 49.9 0.0 -60.0 18 0.0 115.5 -60.0 22 0.0 211.1 -60.0 23 49.9 211.1 -60.0 24 40.0 282.9 -60.0 25 49.9 263.9 -60.0 22 99.8 158.4 -60.0 30 98.8 316.7 -60.0 28 49.9 368.5 -60.0 32 99.8 158.4 -60.0 30 98.8 30.0 -60.0 31 99.8 156.5												
T												
10												
13												
16			369.5								700.0 52.9	
19			52.8									
22 0,0 211.1 -60.0 23 49,9 211.1 -60.0 24 0.0 263,9 -60.0 26 0.0 316.7 -60.0 27 49,9 316.7 -60.0 29 99.8 52.8 -60.0 30 99.8 0.0 -60.0 30 99.8 0.0 -60.0 30 99.8 0.0 -60.0 30 99.8 30.9 20.0 -60.0 30 99.8 30.9 99.8 31.67 -60.0 33 99.8 30.9 89.8 369.5 -60.0 40 41.48 22.8 -60.0 38 99.8 30.9 -60.0 40 149.8 316.7 -60.0 41 149.8 263.9 -60.0 42 149.8 316.7 -60.0 44 199.7 152.8 -60.0 47 199.7 158.4 -60.0 48 199.7 115.5 -60.0 45 199.7 10.0 -60.0 51 249.6 316.7 -60.0												
25 49.9 266.9 -60.0 26 0.0 316.7 -60.0 27 49.9 316.7 -60.0 31 99.8 115.5 -60.0 32 99.8 158.4 -60.0 33 99.8 211.1 -60.0 34 99.8 263.9 -60.0 38 149.8 115.5 -60.0 39.8 281.1 -60.0 40 148.8 52.8 -60.0 41 149.8 115.5 -60.0 39 149.8 158.4 -60.0 43 199.7 316.7 -60.0 41 149.8 216.0 42 149.8 316.7 -60.0 46 199.7 316.7 -60.0 47 199.7 369.5 -60.0 48 199.7 263.9 -60.0 49 199.7 316.7 -60.0 50 299.5 316.7 -60.0 51 249.6 211.1 -60.0 55 249.6 368.5 -60.0 <td></td>												
28	25											
31 99.8 115.5 -60.0 32 99.8 158.4 -60.0 33 99.8 211.1 -60.0 37 149.8 52.8 -60.0 35 99.8 158.4 -60.0 39 149.8 158.4 -60.0 37 149.8 52.8 -60.0 38 149.8 115.5 -60.0 39 149.8 158.4 -60.0 40 149.8 211.1 -60.0 41 149.8 263.9 -60.0 42 149.8 316.7 -60.0 43 199.7 316.7 -60.0 44 199.7 369.5 -60.0 45 199.7 263.9 -60.0 46 199.7 211.1 -60.0 47 199.7 158.4 -60.0 48 199.7 263.9 -60.0 49 199.7 52.8 -60.0 50 199.7 06.0 51 249.6 316.7 -60.0 52 249.6 369.5 -60.0 53 249.6 263.9 -60.0 51 249.6 316.7 -60.0 55 249.6 158.4 -60.0 56 249.6 115.5 -60.0 57 249.6 52.8 -60.0 56 249.6 0.0 -60.0 59 299.5 316.7 -60.0 60 299.5 263.9 -60.0 61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 60 299.5 263.9 -60.0 64 299.5 52.8 -60.0 65 149.8 414.5 -60.0 66 199.7 414.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 66 199.7 441.5 -60.0 70 299.5 414.5 -60.0 71 99.8 414.5 -60.0 69 249.6 459.5 -60.0 73 49.9 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 76 403.5 661.7 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 81 52.0 -60.0 75 20.0 414.5 -60.0 86 110.0 62 289.5 52.0 414.5 -60.0 86 110.0 62 289.5 60.0 68 110.0 62 289.5 60.0 75 20.0 414.5 -60.0 86 110.0 62 289.5 60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.8 -60.0 80 52.0 52.8 -60.0 80 52.8 -60.0 80 52.0 52.8 -60.0 81 52.0 115.5 -60.0 85 115.5 -60.0 89 52.0 52.8 -60.0 80 52.0 52.0 52.8 -60.0 80 52.0 52.8 -60.0 80 52.0 52.0 52.8 -60.0 80 52.0 52.0 52.8 -60.0 80 52.0 52.0 52.0 52.8 -60.0 80 5												
34 99.8 263.9 -60.0 35 99.8 316.7 -60.0 36 99.8 369.5 -60.0 40 149.8 211.1 -60.0 41 149.8 263.9 -60.0 42 149.8 316.7 -60.0 40 149.8 211.1 -60.0 41 149.8 263.9 -60.0 42 149.8 316.7 -60.0 41 199.7 316.7 -60.0 44 199.7 369.5 -60.0 45 199.7 263.9 -60.0 42 199.7 263.9 -60.0 47 199.7 158.4 -60.0 48 199.7 115.5 -60.0 43 199.7 52.8 -60.0 50 199.7 0.0 -60.0 51 249.6 316.7 -60.0 52 249.6 369.5 -60.0 53 249.6 263.9 -60.0 51 249.6 211.1 -60.0 55 249.6 158.4 -60.0 56 249.6 115.5 -60.0 57 249.6 52.8 -60.0 56 249.6 0.0 -60.0 59 299.5 316.7 -60.0 60 299.5 263.9 -60.0 61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 63 299.5 115.5 -60.0 64 299.5 52.8 -60.0 65 149.8 141.5 -60.0 66 199.7 414.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 90.0 414.5 -60.0 76 403.5 661.7 -60.0 80 52.0 52.8 -60.0 80 52.0 52.8 -60.0 81 52.0 52.8 -60.0 82 -104.0 0.0 -60.0 80 52.8 -60.0 80 52.0 52.8 -60.0 75 0.0 414.5 -60.0 83 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 84 -104.0 158.4 -60.0 84 -104.0 0.0 -60.0 80 52.0 52.8 -60.0 81 -52.0 115.5 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 84 -104.0 158.4 -60.0 94 -104.0 414.5 -60.0 95 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 52.8 -60.0 89 -52.0 263.9 -60.0 91 -104.0 369.5 -60.0 94 -104.0 52.8 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 50.5 54.0 60.0 98 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 50.5 54.0 60.0 98 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 50.5 54.0 60.0 98 -52.0 263.9 -60.0 90 -104.0 516.3 660.7 -60.0 95 -52.0 582.4 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 100 -0.0 541.5 -60.0 113 99.8 50.5 -60.0 105 -52.0 369.5 -60.0 101 -104.0 50.5 -60.0 113 99.8 50.5 -60.0 114 49.8 522.4 -60.0 105 -104.0 50.5 -60.0 114 40.0 50.5 -60.0 122 199.5 522.4 -60.0 106 -104.0 50.5 -60.0 113 99.8 50.5 -60.0 114 49.5 522.4 -60.0 115 -99.8 541.5 -60.0 114 49.3 531.5 541.5 -60.0 122 149.5 500.5 500.5 60.0 118 -49.9 582									33	99.8		
40	34					99.8	316.7		36	99.8	369.5	-60.0
43 199.7 316.7 -60.0 44 199.7 389.5 -60.0 45 199.7 263.9 -60.0 49 199.7 52.8 -60.0 50 199.7 0.0 -60.0 51 249.6 316.7 -60.0 52 249.6 369.5 -60.0 53 249.6 263.9 -60.0 54 249.6 211.1 -60.0 55 249.6 0.0 -60.0 56 249.6 115.5 -60.0 57 249.6 52.8 -60.0 58 249.6 0.0 -60.0 59 299.5 316.7 -60.0 60 299.5 263.9 -60.0 61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 60 299.5 263.9 -60.0 64 299.5 52.8 -60.0 65 149.8 414.5 -60.0 66 199.7 414.5 -60.0 67 199.7 495.5 -60.0 68 249.6 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 0.0 414.5 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 115.5 -60.0 83 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 115.5 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 94 -104.0 52.9 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 94 -104.0 502.9 -60.0 98 -52.0 263.9 -60.0 99 -52.0 500.5 -60.0 94 -104.0 502.9 -60.0 98 -52.0 263.9 -60.0 99 -52.0 500.5 -60.0 94 -104.0 500.5 -60.0 98 -52.0 263.9 -60.0 99 -52.0 500.5 -60.0 94 -104.0 500.5 -60.0 98 -52.0 263.9 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 98 -52.0 263.9 -60.0 111 49.9 541.5 -60.0 115 49.9 500.5 -60.0 114 49.9 623.4 -60.0 114 49.9 541.5 -60.0 124 199.7 582.4 -60.0 116 99.8 500.5 -60.0 117 49.9 541.5 -60.0 125 49.9 500.5 -60.0 113 299.5 541.5 -60.0 120 149.8 500.5 -60.0 124 199.7 502.4 -60.0 125 249.6 502.4 -60.0 126 249.6 623.4 -60.0 125			52.8		38				39	149.8	158.4	
46					41							
49 199.7 52.8 -60.0 50 199.7 0.0 -60.0 51 249.6 316.7 -60.0 52 249.6 158.4 -60.0 56 249.6 115.5 -60.0 57 249.6 52.8 -60.0 58 249.6 0.0 -60.0 59 249.6 115.5 -60.0 60 299.5 283.9 -60.0 61 239.5 52.8 -60.0 62 299.5 158.4 -60.0 63 299.5 158.4 -60.0 63 299.5 158.4 -60.0 66 199.7 414.5 -60.0 67 299.5 52.8 -60.0 65 149.8 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 49.8 414.5 -60.0 72 99.8 459.5 -60.0 73 49.4 414.5 -60.0 78 453.5 66.1 <td></td>												
52 249.6 369.5 -60.0 53 249.6 115.5 -60.0 57 249.6 211.1 -60.0 58 249.6 0.0 -60.0 59 299.5 316.7 -60.0 60 299.5 263.9 -60.0 61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 63 299.5 115.5 -60.0 64 299.5 211.1 -60.0 62 299.5 158.4 -60.0 66 199.7 414.5 -60.0 66 199.7 449.5 -60.0 68 249.6 414.5 -60.0 72 99.8 445.5 -60.0 72 99.8 449.6 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 0.0 414.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 81 -52.0 115.5 <												
55 249.6 158.4 -60.0 56 249.6 115.5 -60.0 57 249.6 52.8 -60.0 61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 63 299.5 115.5 -60.0 64 299.5 52.8 -60.0 65 149.8 414.5 -60.0 66 199.7 414.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 69 249.6 449.6 414.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 78 453.5 661.7 -60.0 82 -104.0 52.8 -60.0 80 -52.0 52.8 -60.0 81 -52.			52.8								316.7	
58 249.6 0.0 -60.0 59 299.5 316.7 -60.0 60 299.5 263.9 -60.0 61 299.5 51.1 -60.0 62 299.5 158.4 -60.0 63 299.5 115.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 72 99.8 459.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 78 453.5 661.7 -60.0 79 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 81 -52.0 115.5 -60.0 82 -104.0											211.1	
61 299.5 211.1 -60.0 62 299.5 158.4 -60.0 63 299.5 115.5 -60.0 64 299.5 52.8 -60.0 65 149.8 414.5 -60.0 66 199.7 414.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 99.8 444.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 0.0 414.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 78 453.5 661.7 -60.0 79 -104.0 52.8 -60.0 80 -52.0 52.8 -60.0 81 -52.0 115.5 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 155.4 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 91 -52.0 368.7 -60.0 92 -104.0 369.5 -60.0 90 -104.0 419.5 -60.0 91 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 369.5 -60.0 91 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 582.4 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 107 -104.0 500.5 -60.0 108 -104.0 500.5 -60.0 109 49.9 582.4 -60.0 104 49.9 623.4 -60.0 105 -52.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 116 99.8 500.5 -60.0 107 -104.0 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 541.5 -60.0 119 149.8 541.5 -60.0 114 99.8 623.4 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 116 199.7 582.4 -60.0 122 199.7 623.4 -60.0 120 149.8 500.5 -60.0 122 199.7 582.4 -60.0 124 199.7 500.5 -60.0 128 249.6 500.5 -60.0 129 299.5 500.5 -60.0 133 299.5 623.4 -60.0 125 249.6 500.5 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 500.5 -60.0 133 351.5 500.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403.5 541.5 -60.0 140 403			158.4									
64 299.5 52.8 -60.0 65 149.8 414.5 -60.0 66 199.7 414.5 -60.0 67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 69 249.6 459.5 -60.0 70 299.5 414.5 -60.0 71 99.8 414.5 -60.0 72 99.8 459.5 -60.0 73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 0.0 414.5 -60.0 76 403.5 661.7 -60.0 77 403.5 70.0 -60.0 78 453.5 661.7 -60.0 79 -104.0 52.8 -60.0 80 -52.0 52.8 -60.0 81 -52.0 115.5 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 81 -52.0 115.5 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 85 -52.0 158.4 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 91 -52.0 316.7 -60.0 92 -104.0 369.5 -60.0 90 -104.0 316.7 -60.0 91 -52.0 316.7 -60.0 95 -52.0 414.5 -60.0 96 -104.0 211.1 -60.0 87 -52.0 316.7 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 107 -104.0 500.5 -60.0 110 49.9 623.4 -60.0 111 49.9 501.5 -60.0 112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 99.8 623.4 -60.0 114 99.8 623.4 -60.0 115 149.8 623.4 -60.0 122 199.7 623.4 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 122 199.7 582.4 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 122 199.7 582.4 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 123 199.7 541.5 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 122 199.7 582.4 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 123 199.7 541.5 -60.0 130 299.5 500.5 -60.0 125 249.6 582.4 -60.0 123 199.7 541.5 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 122 199.7 582.4 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 123 199.7 541.5 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 123 199.7 541.5 -60.0 124 199.7 582.4 -60.0 125 249.6 582.4 -60.0 125 249.6 582.4 -60.0 135 351.5 541.5 -60.0 144 403.5 582.4 -60.0 144 403.5 582.4 -60.0 144 403.5 582.4 -60			0.0									
67 199.7 459.5 -60.0 68 249.6 414.5 -60.0 72 99.8 459.5 -60.0 70 299.5 414.5 -60.0 74 49.9 445.5 -60.0 75 0.0 414.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 84 453.5 661.7 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 90 -104.0 316.7 -60.0 92 -104.0 369.5 -60.0 93 -52.0 369.5 -60.0 94 -104.0 <			∠II.I 52.0									
70			150 5									
73 49.9 414.5 -60.0 74 49.9 459.5 -60.0 75 0.0 414.5 -60.0 76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 78 453.5 661.7 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 115.5 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 92 -104.0 369.5 -60.0 93 -52.0 369.5 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
76 403.5 661.7 -60.0 77 403.5 700.0 -60.0 78 453.5 661.7 -60.0 79 -104.0 52.8 -60.0 80 -52.0 52.8 -60.0 81 -52.0 115.5 -60.0 85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 91 -52.0 316.7 -60.0 92 -104.0 369.5 -60.0 93 -52.0 369.5 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 10 500.5 -60.0 10 20 582.0 500.5 -60.0 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
79 -104.0 52.8 -60.0 80 -52.0 52.8 -60.0 81 -52.0 115.5 -60.0 82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 103 -52.0 582.4 -60.0 107 -104.0										453.5		
82 -104.0 0.0 -60.0 83 -52.0 0.0 -60.0 84 -104.0 158.4 -60.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 90 -104.0 316.7 -60.0 91 -52.0 369.5 -60.0 90 -104.0 316.7 -60.0 92 -104.0 369.5 -60.0 93 -52.0 369.5 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 103 -52.0 582.4 -60.0 107 -104.0 541.5			52.8									
85 -52.0 158.4 -60.0 86 -104.0 211.1 -60.0 87 -52.0 211.1 -60.0 88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109												
88 -104.0 263.9 -60.0 89 -52.0 263.9 -60.0 90 -104.0 316.7 -60.0 91 -52.0 316.7 -60.0 92 -104.0 369.5 -60.0 93 -52.0 369.5 -60.0 94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 101 -52.0 50.5 -60.0 199 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 102 0.0 582.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 116			158.4						87			
94 -104.0 414.5 -60.0 95 -52.0 414.5 -60.0 96 -104.0 459.5 -60.0 97 -52.0 459.5 -60.0 98 0.0 500.5 -60.0 99 -52.0 500.5 -60.0 100 0.0 541.5 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 49.8 582.4 -60.0 115 99.8 541.5 -60.0 116 99.8 541.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 131 299.5 623.4 -60.0 131 299.5 541.5 -60.0 131 299.5 541.5 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 134 351.5 541.5 -60.0 132 299.5 582.4 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 138 403.5 500.5 -60.0 140 403.5 541.5 -60.0 144 403.5 369.5 -60.0 146 403.5 369.5 -60.0 147 351.5 52.8 -60.0 148 403.5 263.9 -60.0 149 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -60.0 156 351.5 52.8 -					89				90	-104.0	316.7	
97									93			
100 0.0 541.5 -60.0 101 -52.0 541.5 -60.0 102 0.0 582.4 -60.0 103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 116 99.8 582.4 -60.0 111 49.9 8623.4 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121												
103 -52.0 582.4 -60.0 104 0.0 623.4 -60.0 105 -52.0 623.4 -60.0 106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 49.9 541.5 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 <td></td> <td>500.5</td> <td></td>											500.5	
106 -104.0 500.5 -60.0 107 -104.0 541.5 -60.0 108 -104.0 582.4 -60.0 109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 49.9 623.4 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 122 149.8 540.5 -60.0 122 249.6 623.4 -60.0 122 249											582.4	
109 49.9 582.4 -60.0 110 49.9 623.4 -60.0 111 49.9 541.5 -60.0 112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 99.8 623.4 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133											623.4	
112 49.9 500.5 -60.0 113 99.8 582.4 -60.0 114 99.8 623.4 -60.0 115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 130 299.5 623.4 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 582.4 -60.0 137 351.5 459.5 -60.0 1												
115 99.8 541.5 -60.0 116 99.8 500.5 -60.0 117 149.8 582.4 -60.0 118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 13											541.5 622.4	
118 149.8 623.4 -60.0 119 149.8 541.5 -60.0 120 149.8 500.5 -60.0 121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0			500.5 541.5									
121 199.7 582.4 -60.0 122 199.7 623.4 -60.0 123 199.7 541.5 -60.0 124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 138 403.5 582.4 -60.0 142 403.5 414.5 -60.0 144 403.5 369.5 -60.0												
124 199.7 500.5 -60.0 125 249.6 582.4 -60.0 126 249.6 623.4 -60.0 127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 138 403.5 582.4 -60.0 142 403.5 459.5 -60.0 140 403.5 541.5 -60.0 141 403.5 582.4 -60.0 142 403.5 414.5 -60.0 143 351.5 414.5 -60.0												
127 249.6 541.5 -60.0 128 249.6 500.5 -60.0 129 299.5 582.4 -60.0 130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 141 403.5 582.4 -60.0 142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 151 351.5 263.9 -60.0 149 351.5 263.9 -60.0											623.4	
130 299.5 623.4 -60.0 131 299.5 541.5 -60.0 132 299.5 500.5 -60.0 133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 141 403.5 582.4 -60.0 142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0					128							
133 351.5 500.5 -60.0 134 351.5 459.5 -60.0 135 351.5 541.5 -60.0 136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 141 403.5 582.4 -60.0 142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 158 351.5 52.8 -60.0 159 -154.0 623.4 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 <td></td> <td></td> <td></td> <td></td> <td>131</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					131							
136 351.5 582.4 -60.0 137 351.5 623.4 -60.0 138 403.5 500.5 -60.0 139 403.5 459.5 -60.0 140 403.5 541.5 -60.0 141 403.5 582.4 -60.0 142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0										351.5		
142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0						351.5						
142 403.5 414.5 -60.0 143 351.5 414.5 -60.0 144 403.5 369.5 -60.0 145 351.5 369.5 -60.0 146 403.5 316.7 -60.0 147 351.5 316.7 -60.0 148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0	139	403.5		-60.0	140	403.5	541.5	-60.0				-60.0
148 403.5 263.9 -60.0 149 351.5 263.9 -60.0 150 403.5 211.1 -60.0 151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0			414.5				414.5			403.5		-60.0
151 351.5 211.1 -60.0 152 403.5 158.4 -60.0 153 351.5 158.4 -60.0 154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 159 -154.0 623.4 -60.0	145							-60.0	147			
154 351.5 115.5 -60.0 155 403.5 52.8 -60.0 156 351.5 52.8 -60.0 157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0												
157 403.5 0.0 -60.0 158 351.5 0.0 -60.0 159 -154.0 623.4 -60.0												
160 -154.0 582.4 -60.0 161 -154.0 541.5 -60.0 162 -154.0 500.5 -60.0												
	160	-154.0	582.4	-60.0	161	-154.0	541.5	-60.0	162	-154.0	500.5	-60.0


163	-154.0	459.5	-60.0	164	-154.0	414.5	-60.0	165	-154.0	369.5	-60.0
166	-154.0	316.7	-60.0	167	-154.0	263.9	-60.0	168	-154.0	211.1	-60.0
169	-154.0	158.4	-60.0	170	-154.0	115.5	-60.0	171	-154.0	52.8	-60.0
172	-154.0	0.0	-60.0	173	453.5	623.4	-60.0	174	453.5	582.4	-60.0
175	453.5	541.5	-60.0	176	453.5	500.5	-60.0	177	453.5	459.5	-60.0
178	453.5	414.5	-60.0	179	453.5	369.5	-60.0	180	453.5	316.7	-60.0
181	453.5	263.9	-60.0	182	453.5	211.1	-60.0	183	453.5	158.4	-60.0
184	453.5	115.5	-60.0	185	453.5	52.8	-60.0	186	453.5	0.0	-60.0
187	-154.0	700.0	-60.0	188	-154.0	661.7	-60.0	189	-104.0	661.7	-60.0
190	-104.0	700.0	-60.0	191	-52.0	661.7	-60.0	192	-52.0	700.0	-60.0
193	0.0	661.7	-60.0	194	0.0	700.0	-60.0	195	49.9	661.7	-60.0
196	49.9	700.0	-60.0	197	99.8	661.7	-60.0	198	99.8	700.0	-60.0
199	149.8	661.7	-60.0	200	149.8	700.0	-60.0	201	199.7	661.7	-60.0
202	199.7	700.0	-60.0	203	249.6	661.7	-60.0	204	249.6	700.0	-60.0
205	299.5	661.7	-60.0	206	299.5	700.0	-60.0	207	351.5	661.7	-60.0
208	351.5	700.0	-60.0	209	403.5	623.4	-40.0	210	-104.0	623.4	-40.0
211	-104.0	115.5	-40.0	212	403.5	115.5	-40.0	213	99.8	316.7	-40.0
214	199.7	316.7	-40.0	215	199.7	414.5	-40.0	216	99.8	414.5	-40.0

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

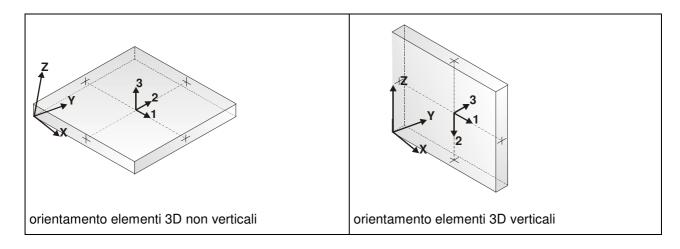
Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

in demone viole indicate in tacona.							
numero dell'elemento							
codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta							
compressa,							
numero del nodo iniziale (finale)							
codice del materiale assegnato all'elemento							
codice della sezione assegnata all'elemento							
valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di							
default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali							
l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2							
diretto secondo X negativo e l'asse 3 diretto secondo Y negativo							
codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti							
sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)							
costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo							
elastico							
costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico							
orizzontale							

Elem.Note	Nodo I	Nodo J	Mat.	Sez.	Rotaz.	Svincolo I gradi	Svincolo J	Wink V	Wink O daN/cm3	daN/cm3
1	Trave	152	150	3	3					
2	Trave	130	137	3	3					
3	Trave	154	9	3	3					
4	Trave	94	96	3	3					
5	Trave	148	146	3	3					
6	Trave	56	63	3	3					
7	Trave	96	106	3	3					
8	Trave	106	107	3	3					

12	9 10 11	Trave Trave Trave	150 137 126	148 6 130	3 3 3	3 3 3
15	12	Trave	63	154	3	3
16	14	Trave	42	5	3	3
17 Trave 170 8 3 3 18 Trave 159 7 3 3 19 Trave 159 7 3 3 20 Trave 157 155 3 3 21 Trave 165 92 3 3 22 Trave 13 37 3 3 22 Trave 13 37 3 3 24 Trave 6 773 3 3 25 Trave 6 773 3 3 26 Trave 6 76 3 3 27 Trave 5 44 3 3 28 Trave 5 65 3 3 27 Trave 8 84 3 3 30 Trave 7 105 3 3 31 Trave 10 2					3 3	3
30	17	Trave	170		3	3
30	19		159	7	3	3
30					3	3 3
30	22	Trave	13	37	3	3
30		Trave Trave				3 3
30	25	Trave	6	173	3	3
30		Trave Trave				3
30		Trave			3	3
32	30	Trave	7	105	3	3
33						3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3	33	Trave	37	38	3	3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3	34 35					3 3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3	36	Trave	76	77	3	3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3					3	3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3	39	Trave		8	3	3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3	41		92	93	3	3
44 Trave 65 14 3 3 45 Trave 84 86 3 3 46 Trave 104 110 3 3 47 Trave 138 140 3 3 48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 144 179 3 3 51 Trave 117 118 3 3 51 Trave 105 104 3 3 3 51 Trave 105 104 3 3 3 51 Trave 115 117 118 3 3 3 52 Trave 145 144 3 3 3 3 3 3 3 3 3		Trave Trave				3 3
48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 117 118 3 3 51 Trave 117 118 3	44	Trave	65	14	3	3
48 Trave 28 36 3 3 49 Trave 38 39 3 3 50 Trave 144 179 3 3 50 Trave 117 118 3 3 51 Trave 117 118 3			84 104		3 3	3 3
56 Trave 119 117 3 3 57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3	47	Trave	138	140	3	3
56 Trave 119 117 3 3 57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3						3 3
56 Trave 119 117 3 3 57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3	50	Trave	144	179	3	3
56 Trave 119 117 3 3 57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3	52	Trave			3	3
56 Trave 119 117 3 3 57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3		Trave				3
57 Trave 93 10 3 3 58 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 110 114 3 3 61 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3 3 3 3 65 Trave 18 199 3	55	Trave	145	144	3	3
58 Trave 19 31 3 3 59 Trave 52 11 3 3 60 Trave 86 88 3 3 61 Trave 10 114 3 3 61 Trave 110 114 3 3 62 Trave 140 141 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 3 64 Trave 39 40 3 3 3 6 4 Trave 3						
61 Trave 110 114 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 64 Trave 39 40 3 3 65 Trave 118 199 3 3 66 Trave 142 139 3 3 67 Trave 120 119 3 3 68 Trave 31 38 3 3 69 Trave 88 90 3 3 70 Trave 144 118 3 3 70 Trave 141 6 3 3 71 Trave 141 6 3 3 72 Trave 40 41 3 3 73 Trave 199 200 3 3 74 Trave 144 <td>58</td> <td>Trave</td> <td>19</td> <td>31</td> <td>3</td> <td>3</td>	58	Trave	19	31	3	3
61 Trave 110 114 3 3 62 Trave 140 141 3 3 63 Trave 36 5 3 3 64 Trave 39 40 3 3 65 Trave 118 199 3 3 66 Trave 142 139 3 3 67 Trave 120 119 3 3 68 Trave 31 38 3 3 69 Trave 88 90 3 3 70 Trave 144 118 3 3 70 Trave 141 6 3 3 71 Trave 141 6 3 3 72 Trave 40 41 3 3 73 Trave 199 200 3 3 74 Trave 144 <td></td> <td></td> <td></td> <td></td> <td>3 3</td> <td>3 3</td>					3 3	3 3
63	61	Trave	110	114	3	3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	63	Trave			3	3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	64 65				3	3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	66	Trave	142	139	3	3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1			120 31		3 3	3 3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	69	Trave	88	90	3	3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1						3
74 Trave 144 142 3 3 75 Trave 38 48 3 3 76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	72	Trave	40	41	3	3
76 Trave 90 92 3 3 77 Trave 118 122 3 3 78 Trave 41 42 3 3 79 Trave 146 144 3 3 80 Trave 48 56 3 3 81 Trave 92 94 3 3 82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1		Trave			3	3
82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1		Trave	38		3	3
82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	77		118	122	3	3
82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1						3 3
82 Pilas. 8 211 47 1 83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1	80	Trave	48	56	3	3
83 Pilas. 35 213 47 1 84 Pilas. 7 210 47 1		Pilas.	92 8			3 1
85 Pilas. 71 216 47 1	83	Pilas.	35	213	47	1
			71			


86	Pilas.	66	215	47	1
87	Pilas.	43	214	47	1
88	Pilas.	6	209	47	1
89	Pilas.	9	212	47	1

MODELLAZIONE STRUTTURA: ELEMENTI SHELL

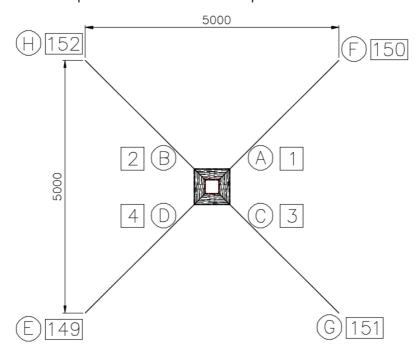
Il programma utilizza per la modellazione elementi a tre o quattro nodi denominati in generale shell.

Ogni elemento shell è individuato dai nodi I, J, K, L (L=I per gli elementi a tre nodi).

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento
Note	codice di comportamento:
	Guscio (elemento guscio in elevazione non verticale)
	Guscio fond. (elemento guscio su suolo elastico)
	Setto (elemento guscio in elevazione verticale)
	Membrana (elemento guscio con comportamento membranale)
Nodo I (J, K, L)	numero del nodo I (J, K, L)
Mat.	codice del materiale assegnato all'elemento
Spessore	spessore dell'elemento (costante)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico
	verticale
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico
	orizzontale


Elem.Note	Nodo I	Nodo J	Nodo K	Nodo L	Mat.	Spessore	Svincolo cm	Wink V	Wink O daN/cm3	daN/cm3
1 Gu	scio fond.	4	17	16	15	3	40.0		1.00	1.00
	scio fond.	5	44	66	65	3	40.0		1.00	1.00
	scio fond.	65	66	67	14	3	40.0		1.00	1.00
	scio fond.	20	21	23	22	3	40.0		1.00	1.00
	scio fond.	22	23	25	24	3	40.0		1.00	1.00
		24	25 25			3				
	scio fond.		-	27	26		40.0		1.00	1.00
	scio fond.	26	27	28	10	3	40.0		1.00	1.00
	scio fond.	17	30	29	16	3	40.0		1.00	1.00
	scio fond.	44	52	68	66	3	40.0		1.00	1.00
	scio fond.	66	68	69	67	3	40.0		1.00	1.00
	scio fond.	21	32	33	23	3	40.0		1.00	1.00
	scio fond.	23	33	34	25	3	40.0		1.00	1.00
13 Gu	scio fond.	25	34	35	27	3	40.0		1.00	1.00
	scio fond.	27	35	36	28	3	40.0		1.00	1.00
15 Gu	scio fond.	30	13	37	29	3	40.0		1.00	1.00
16 Gu	scio fond.	52	11	70	68	3	40.0		1.00	1.00
17 Gu:	scio fond.	68	70	2	69	3	40.0		1.00	1.00
18 Gu:	scio fond.	32	39	40	33	3	40.0		1.00	1.00
19 Gu	scio fond.	33	40	41	34	3	40.0		1.00	1.00
20 Gu:	scio fond.	34	41	42	35	3	40.0		1.00	1.00
	scio fond.	35	42	5	36	3	40.0		1.00	1.00
22 Gu	scio fond.	42	43	44	5	3	40.0		1.00	1.00
	scio fond.	41	45	43	42	3	40.0		1.00	1.00
	scio fond.	40	46	45	41	3	40.0		1.00	1.00
	scio fond.	39	47	46	40	3	40.0		1.00	1.00
	scio fond.	36	5	65	71	3	40.0		1.00	1.00
	scio fond.	71	65	14	72	3	40.0		1.00	1.00
	scio fond.	13	50	49	37	3	40.0		1.00	1.00
	scio fond.			52	_					
		43	51		44	3	40.0		1.00	1.00
	scio fond.	45	53	51	43	3	40.0		1.00	1.00
	scio fond.	46	54	53	45	3	40.0		1.00	1.00
	scio fond.	47	55	54	46	3	40.0		1.00	1.00
	scio fond.	28	36	71	73	3	40.0		1.00	1.00
	scio fond.	73	71	72	74	3	40.0		1.00	1.00
	scio fond.	50	58	57	49	3	40.0		1.00	1.00
	scio fond.	51	59	11	52	3	40.0		1.00	1.00
37 Gu:	scio fond.	53	60	59	51	3	40.0		1.00	1.00
38 Gu	scio fond.	54	61	60	53	3	40.0		1.00	1.00
39 Gu:	scio fond.	55	62	61	54	3	40.0		1.00	1.00
40 Gu	scio fond.	10	28	73	75	3	40.0		1.00	1.00
41 Gu:	scio fond.	75	73	74	1	3	40.0		1.00	1.00
42 Gu:	scio fond.	58	3	64	57	3	40.0		1.00	1.00
43 Gu	scio fond.	18	19	21	20	3	40.0		1.00	1.00
44 Gu:	scio fond.	19	31	32	21	3	40.0		1.00	1.00
45 Gu	scio fond.	31	38	39	32	3	40.0		1.00	1.00
	scio fond.	38	48	47	39	3	40.0		1.00	1.00
	scio fond.	48	56	55	47	3	40.0		1.00	1.00
	scio fond.	56	63	62	55	3	40.0		1.00	1.00
	scio fond.	57	64	63	56	3	40.0		1.00	1.00
	scio fond.	49	57	56	48	3	40.0		1.00	1.00
	scio fond.	37	49	48	38	3	40.0		1.00	1.00
	scio fond.	29	37	38	31	3	40.0		1.00	1.00
	scio fond.	16	29	31	19	3	40.0		1.00	
		15	16	19	18	3	40.0		1.00	1.00
	scio fond.									1.00
	scio fond.	79	80	81	8	3	40.0		1.00	1.00
	scio fond.	80	15	18	81	3	40.0		1.00	1.00
	scio fond.	82	83	80	79	3	40.0		1.00	1.00
	scio fond.	83	4	15	80	3	40.0		1.00	1.00
	scio fond.	8	81	85	84	3	40.0		1.00	1.00
	scio fond.	81	18	20	85	3	40.0		1.00	1.00
	scio fond.	84	85	87	86	3	40.0		1.00	1.00
	scio fond.	85	20	22	87	3	40.0		1.00	1.00
	scio fond.	86	87	89	88	3	40.0		1.00	1.00
64 Gu	scio fond.	87	22	24	89	3	40.0		1.00	1.00
65 Gu	scio fond.	88	89	91	90	3	40.0		1.00	1.00
66 Gu	scio fond.	89	24	26	91	3	40.0		1.00	1.00
	scio fond.	90	91	93	92	3	40.0		1.00	1.00
	scio fond.	91	26	10	93	3	40.0		1.00	1.00
	scio fond.	92	93	95	94	3	40.0		1.00	1.00
	scio fond.	93	10	75	95	3	40.0		1.00	1.00
	scio fond.	94	95	97	96	3	40.0		1.00	1.00
	scio fond.	95	75	1	97	3	40.0		1.00	1.00
	scio fond.	93 97	1	98	99	3	40.0		1.00	1.00
	scio fond.	99	98	100	101	3	40.0		1.00	1.00
	scio fond.	101	100	100	101	3	40.0		1.00	1.00
75 Gu	solo itilu.	101	100	102	103	3	40.0		1.00	1.00

76 Guscio fond.	103	102	104	105	3	40.0	1.0	0 1.00
77 Guscio fond.	96	97	99	106	3	40.0	1.0	0 1.00
78 Guscio fond.	106	99	101	107	3	40.0	1.0	
79 Guscio fond.	107	101	103	108	3	40.0	1.0	0 1.00
80 Guscio fond.	108	103	105	7	3	40.0	1.0	0 1.00
81 Guscio fond.	102	109	110	104	3	40.0	1.0	0 1.00
82 Guscio fond.	100	111	109	102	3	40.0	1.0	0 1.00
83 Guscio fond.	98	112	111	100	3	40.0	1.0	0 1.00
84 Guscio fond.	1	74	112	98	3	40.0	1.0	0 1.00
85 Guscio fond.	109	113	114	110	3	40.0	1.0	0 1.00
86 Guscio fond.	111	115	113	109	3	40.0	1.0	0 1.00
87 Guscio fond.	112	116	115	111	3	40.0	1.0	0 1.00
88 Guscio fond.	74	72	116	112	3	40.0	1.0	0 1.00
89 Guscio fond.	113	117	118	114	3	40.0	1.0	0 1.00
90 Guscio fond.	115	119	117	113	3	40.0	1.0	0 1.00
91 Guscio fond.	116	120	119	115	3	40.0	1.0	0 1.00
91 Guscio iona.								
92 Guscio fond.	72	14	120	116	3	40.0	1.0	0 1.00
93 Guscio fond.	117	121	122	118	3	40.0	1.0	0 1.00
94 Guscio fond.	119	123	121	117	3	40.0	1.0	0 1.00
95 Guscio fond.	120	124	123	119	3	40.0	1.0	0 1.00
96 Guscio fond.	14	67	124	120	3	40.0	1.0	0 1.00
97 Guscio fond.	121	125	126	122	3	40.0	1.0	0 1.00
98 Guscio fond.	123	127	125	121	3	40.0	1.0	0 1.00
99 Guscio fond.	124	128	127	123	3	40.0	1.0	0 1.00
100 Guscio fond.	67	69	128	124	3	40.0	1.0	0 1.00
101 Guscio fond.	125	129	130	126	3	40.0	1.0	0 1.00
102 Guscio fond.	127	131	129	125	3	40.0	1.0	0 1.00
103 Guscio fond.	128	132	131	127	3	40.0	1.0	0 1.00
104 Guscio fond.	60	2	122	100			1.0	1 100
104 Guscio ioria.	69		132	128	3	40.0	1.0	
105 Guscio fond.	2	134	133	132	3	40.0	1.0	0 1.00
106 Guscio fond.	132	133	135	131	3	40.0	1.0	0 1.00
107 Guscio fond.	131	135	136	129	3	40.0	1.0	0 1.00
107 Guscio ioria.								
108 Guscio fond.	129	136	137	130	3	40.0	1.0	0 1.00
109 Guscio fond.	134	139	138	133	3	40.0	1.0	0 1.00
110 Guscio fond.	133	138	140	135	3	40.0	1.0	0 1.00
111 Guscio fond.	135	140	141	136	3	40.0	1.0	0 1.00
112 Guaria fond	136	141	6	137	3	40.0	1.0	1 100
112 Guscio fond.								
113 Guscio fond.	143	142	139	134	3	40.0	1.0	0 1.00
114 Guscio fond.	70	143	134	2	3	40.0	1.0	0 1.00
115 Guscio fond.	145	144	142	143	3	40.0	1.0	0 1.00
116 Guscio fond.	11	145	143	70	3	40.0	1.0	0 1.00
117 Guscio fond.	147		144	145	3	40.0	1.0	1 100
		146						
118 Guscio fond.	59	147	145	11	3	40.0	1.0	0 1.00
119 Guscio fond.	149	148	146	147	3	40.0	1.0	0 1.00
120 Guscio fond.	60	149	147	59	3	40.0	1.0	0 1.00
121 Guscio fond.	151	150	148	149	3	40.0	1.0	0 1.00
122 Guscio fond.	61	151	149	60	3	40.0	1.0	0 1.00
122 Guscio ioria.	01		149	60		40.0		
123 Guscio fond.	153	152	150	151	3	40.0	1.0	0 1.00
124 Guscio fond.	62	153	151	61	3	40.0	1.0	0 1.00
125 Guscio fond.	154	9	152	153	3	40.0	1.0	0 1.00
126 Guscio fond.	63	154	153	62	3	40.0	1.0	0 1.00
127 Guscio fond.	156	155	9	154	3	40.0	1.0	0 1.00
128 Guscio fond.	64	156	154	63	3	40.0	1.0	0 1.00
129 Guscio fond.	158	157	155	156	3	40.0	1.0	
130 Guscio fond.	3	158	156	64	3	40.0	1.0	0 1.00
131 Guscio fond.	160	108	7	159	3	40.0	1.0	
132 Guscio fond.	161	107	108	160	3	40.0	1.0	0 1.00
133 Guscio fond.	162	106	107	161	3	40.0	1.0	0 1.00
134 Guscio fond.	163	96	106	162	3	40.0	1.0	0 1.00
135 Guscio fond.	164	94	96	163	3	40.0	1.0	0 1.00
						40.0		
136 Guscio fond.	165	92	94	164	3		1.0	
137 Guscio fond.	166	90	92	165	3	40.0	1.0	0 1.00
138 Guscio fond.	167	88	90	166	3	40.0	1.0	0 1.00
139 Guscio fond.	168	86	88	167	3	40.0	1.0	
140 Guscio fond.	169	84	86	168	3	40.0	1.0	0 1.00
141 Guscio fond.	170	8	84	169	3	40.0	1.0	
142 Guscio fond.	171	79	8	170	3	40.0	1.0	0 1.00
143 Guscio fond.	172	82	79	171	3	40.0	1.0	0 1.00
144 Guscio fond.	141	174	173	6	3	40.0	1.0	
145 Guscio fond.	140	175	174	141	3	40.0	1.0	0 1.00
146 Guscio fond.	138	176	175	140	3	40.0	1.0	
147 Guscio fond.	139	177	176	138	3	40.0	1.0	0 1.00
148 Guscio fond.	142	178	177	139	3	40.0	1.0	0 1.00
149 Guscio fond.	144	179	178	142	3	40.0	1.0	
150 Guscio fond.	146	180	179	144	3	40.0	1.0	0 1.00
151 Guscio fond.	148	181	180	146	3	40.0	1.0	0 1.00
152 Guscio fond.	150	182	181	148	3	40.0	1.0	
TOL GUSCIU IUIIU.	130	102	101	1-10	J	+0.0	1.0	

153 Guscio fond.	152	183	182	150	3	40.0	1.00	1.00
154 Guscio fond.	9	184	183	152	3	40.0	1.00	1.00
155 Guscio fond.	155	185	184	9	3	40.0	1.00	1.00
156 Guscio fond.	157	186	185	155	3	40.0	1.00	1.00
157 Guscio fond.	188	189	190	187	3	40.0	1.00	1.00
158 Guscio fond.	159	7	189	188	3	40.0	1.00	1.00
159 Guscio fond.	189	191	192	190	3	40.0	1.00	1.00
160 Guscio fond.	7	105	191	189	3	40.0	1.00	1.00
161 Guscio fond.	191	193	194	192	3	40.0	1.00	1.00
162 Guscio fond.	105	104	193	191	3	40.0	1.00	1.00
163 Guscio fond.	193	195	196	194	3	40.0	1.00	1.00
164 Guscio fond.	104	110	195	193	3	40.0	1.00	1.00
165 Guscio fond.	195	197	198	196	3	40.0	1.00	1.00
166 Guscio fond.	110	114	197	195	3	40.0	1.00	1.00
167 Guscio fond.	197	199	200	198	3	40.0	1.00	1.00
168 Guscio fond.	114	118	199	197	3	40.0	1.00	1.00
169 Guscio fond.	199	201	202	200	3	40.0	1.00	1.00
170 Guscio fond.	118	122	201	199	3	40.0	1.00	1.00
171 Guscio fond.	201	203	204	202	3	40.0	1.00	1.00
172 Guscio fond.	122	126	203	201	3	40.0	1.00	1.00
173 Guscio fond.	203	205	206	204	3	40.0	1.00	1.00
174 Guscio fond.	126	130	205	203	3	40.0	1.00	1.00
175 Guscio fond.	205	207	208	206	3	40.0	1.00	1.00
176 Guscio fond.	130	137	207	205	3	40.0	1.00	1.00
177 Guscio fond.	207	76	77	208	3	40.0	1.00	1.00
178 Guscio fond.	137	6	76	207	3	40.0	1.00	1.00
179 Guscio fond.	76	78	12	77	3	40.0	1.00	1.00
180 Guscio fond.	6	173	78	76	3	40.0	1.00	1.00

MODELLAZIONE DELLE AZIONI

I carichi e le forze applicate sulla platea di fondazione sono stati forniti dal progettista della struttura in elevazione, tali reazioni vincolari sono state applicate come forze nodali negli 8 nodi schematizzati di seguito. Le sollecitazioni indotte da tali forze sono state utilizzate per dimensionare la platea di fondazione. Di seguito si riportano: schema dei punti, tutte le reazioni vincolari fornite per le varie combinazioni di carico della sovrastruttura e l'estratto delle combinazioni maggiormente significative urilizzate per il dimensionamento della platea di fondazione.

Di seguito si riportano le combinazioni di carico fornite dal progettista della sovrastruttura:

		DEA7	IONI VINCOLARI (COMBINAZIONE 1	SLII		
Nodo N°	Fx	Fy	Fz Fz	Massimo	- SLU Mx	My	Mz
3D	kg = daN	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-1,71				-698,8331	626,0708	-2,4762
2	-2,14				-636,3507	-727,8068	-2,5221
3	-5,93				528,4000	601,8052	-1,8204
4	1,08				604,0248	-535,0430	-1,8215
149	36,15				0,0000	0,0000	0,0000
150	-27,49				0,0000	0,0000	0,0000
151	-31,88				0,0000	0,0000	0,0000
152	31,91	-31,91	174,68	180,41666085	0,0000	0,0000	0,0000
		DE A 7	TONE VINCOLADE	COMBINAZIONE 2	CLII		
Nodo N°	Fx	Fy	Fz	Massimo	Mx	My	Mz
3D	kg = daN	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-2,37				-969,6482	862,7079	-3,5183
2	-2,88				-873,2116	-1 002,8351	-3,5118
3	-8,30				759,2601	868,5136	-2,7576
4	1,71	-3,36	510,87		864,9282	-764,2560	-2,6898
149	49,56			318,30997411	0,0000	0,0000	0,0000
150	-39,31				0,0000	0,0000	0,0000
151	-43,69			271,55593357	0,0000	0.0000	0,0000
152	45,28				0,0000	0,0000	0,0000
	.5,20	,20	200,00		5,5500	5,5500	2,000
			IONI VINCOLARI (COMBINAZIONE 3			
Nodo N°	Fx	Fy	Fz	Massimo	Mx	My	Mz
3D	kg = daN	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-1,28				-2 067,7274	1 895,4223	-8,8135
2	-98,33				434,7879	328,2830	-5,8270
3	-251,45				1 438,8066	1 342,5952	-4,0642
4	0,82				-1 135,6990	865,6677	38,4461
149	-211,69				0,0000	0,0000	0,0000
150	-273,60			1 439,51785710	0,0000	0,0000	0,0000
151	-277,30			1 489,78148920	0,0000	0,0000	0,0000
152	-215,82	01 01 00	-1 077,47	4 440 000000146			
	-2 13,02	215,82	-1 011,41	1 119,86966015	0,0000	0,0000	0,0000
	-2 13,02	1				0,0000	0,0000
	Fx	REAZI		COMBINAZIONE 4 Massimo		0,0000	0,0000
Nodo N°	Fx	REAZI Fy	ONI VINCOLARI O	COMBINAZIONE 4 Massimo	- SLU Mx	My	
Nodo N°	Fx	REAZI Fy	ONI VINCOLARI O Fz kg = daN	COMBINAZIONE 4	- SLU Mx daN cm	My daN cm	Mz daN cm
Nodo N° 3D	Fx kg = daN	REAZI Fy kg = daN	ONI VINCOLARI O Fz kg = daN 1 625,48	COMBINAZIONE 4 Massimo	- SLU Mx daN cm -2 338,5426	My daN cm 2 132,059	Mz daN cm 6 -9,8555
Nodo N° 3D	Fx kg = daN -1,94 -99,07	Fy kg = daN -90,75	ONI VINCOLARI O Fz kg = daN	COMBINAZIONE 4 Massimo	- SLU Mx daN cm -2 338,5426 197,9271	My daN cm 2 132,059 53,254	Mz daN cm 6 -9,8555 7 -6,8167
Nodo N° 3D 1 2	Fx kg = daN -1,94 -99,07 -253,83	REAZI Fy kg = daN -90,75 5,85 13,33	ONI VINCOLARI O Fz kg = daN 1 625,48 -409,78	COMBINAZIONE 4 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667	My daN cm 2 132,059 53,254 1 609,303	Mz daN cm 6 -9,8555 7 -6,8167 6 -5,0015
Nodo N° 3D 1 2 3 4	Fx kg = daN -1,94 -99,07 -253,83 1,44	REAZI Fy kg = daN -90,75 5,85 13,33 63,70	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97	COMBINAZIONE 4 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955	My daN cm 2 132,059 53,254 1 609,303 6 636,454	Mz daN cm 6 -9,8555 7 -6,8167 6 -5,0015 7 37,5779
Nodo N° 3D 1 2 3 4 149	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29	COMBINAZIONE 4 Massimo kg = daN 983,12973037	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000	My daN cm 2 132,059 53,254 1 609,303 636,454 0,000	Mz daN cm 6 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000
Nodo N° 3D 1 2 3 4	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82	Massimo kg = daN 983,12973037 1 507,85014466	- SLU Mx daN cm -2 338,5426 197,927 1 669,6667 -874,7955 0,0000 0,0000	My daN cm 53,254 7 1 609,303 636,454 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 4 149 150	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29	COMBINAZIONE 4 Massimo kg = daN 983,12973037	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000	My daN cm 2 132,059 53,254 7 1 609,303 6 636,454 0,000 0,000 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11	Massimo kg = daN 983,12973037 1 507,85014466 1 560,62666780	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000	My daN cm 2 132,059 53,254 7 1 609,303 6 636,454 0,000 0,000 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80	Massimo kg = daN 983,12973037 1 507,85014466 1 560,62666780	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000	My daN cm 2 132,059 53,254 7 1 609,3030 6 36,454 0,000 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx	My daN cm 2 132,059 53,254 7 1 609,3030 6 36,454 0,000 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm	My daN cm 2 132,0596 53,254 1 609,3036 636,454 0 0,0006 0 0,0006 0 0,0006 My daN cm	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237	My daN cm 2 132,0596 53,254 1 609,3036 636,454 0 0,0000 0 0,0000 0 0,0000 My daN cm 2 741,656	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802	My daN cm 2 132,0596 53,254 1 609,3036 636,454 0 0,0006 0 0,0006 0 0,0006 My daN cm 2 741,6566 2 1 032,3426	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445	My daN cm 2 132,059 53,254 1 609,303 636,454 0,000 0,000 0,000 0,000 My daN cm 2 741,656 2 1 032,342 1 836,455	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 4 4 4 4 4	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146	My daN cm 5 2 132,059 53,254 7 1 609,303 6 636,454 0,000 0,000 0,000 0,000 0,000 My daN cm 7 2 741,656 2 1 032,342 1 836,455 5 1 799,474	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95	ONI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34 -1 339,89 -1 858,96	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445	My daN cm 5 2 132,059 53,254 7 1 609,303 6 636,454 7 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 1 0	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 -0,64 -376,91 -437,67	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7446 -2 295,5146 0,0000 0,0000	My daN cm 53,254 1 609,303 636,454 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1 1032,342 1 1336,455 1 1799,474 0,000 0,000 0,000	Mz daN cm 5 -9,8555 7 -6,8167 5 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000 Mz daN cm 5 -13,0383 3 -8,0302 2 -5,5602 3 65,2912 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 -0,64 -376,91 -437,67 -440,92	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 0,0000	My daN cm 53,254 7 1 609,3030 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 7 2 741,6566 2 1 032,3420 1 1 336,455 5 1 799,474 0,0000 0,0000 0,0000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000 Mz daN cm 5 -13,0383 8 -8,0302 2 -5,5602 3 65,2912 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 -0,64 -376,91 -437,67	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7446 -2 295,5146 0,0000 0,0000	My daN cm 53,254 7 1 609,3030 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 2 741,6566 2 1 032,3420 1 1 336,455 5 1 799,474 0,0000 0,0000 0,0000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000 Mz daN cm 5 -13,0383 8 -8,0302 2 -5,5602 3 65,2912 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 -0,64 -376,91 -437,67 -440,92	Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	My daN cm 53,254 7 1 609,3030 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 7 2 741,6566 2 1 032,3420 1 1 336,455 5 1 799,474 0,0000 0,0000 0,0000	Mz daN cm 5 -9,8555 7 -6,8167 6 -5,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000 Mz daN cm 5 -13,0383 8 -8,0302 2 -5,5602 3 65,2912 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 150	Fx kg = daN -1,94 -99,07 -253,83 -1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 -0,64 -376,91 -437,67 -440,92 -380,97	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 0,0000 - SLU	My daN cm 5 2 132,059(53,254') 1 609,303(6 36,454') 0,000(0,00	Mz daN cm -9,8555 -6,8167 -6,8167 -6,0015 7 37,5779 0 0,0000 0 0,0000 0 0,0000 Mz daN cm -13,0383 -8,0302 -5,5602 2 -5,5602 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 - SLU Mx	My daN cm 2 132,0596 53,254 7 1 609,3036 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 2 741,6566 1 032,3426 1 836,4555 1 799,4746 0,0000 0,0000 0,0000 My	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 152 Nodo N° 3D	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34 -1 339,89 -1 858,96 2 217,23 2 265,03 -1 912,24 ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 -3 980,3237 -3 980,	My daN cm 2 132,0596 53,254 1 1609,3036 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 2 741,6566 1 132,3426 1 1836,455 1 799,4746 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm	Mz daN cm -9,8555 -6,8167 -6,8167 -6,0015 -7,37,779 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -13,0383 -8,0302 -5,5602 8,65,2912 0,0000 0,0000 0,0000 0,0000 0,0000 Mz
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 151	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34 -1 339,89 -1 858,96 2 217,23 2 265,03 -1 912,24 ONI VINCOLARI C Fz kg = daN 0 1 467,09	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 0,0000 - SLU Mx daN cm -1 690,8031	My daN cm 2 132,059 53,254 1 609,303 636,454 0,000 0,000 0,000 0,000 0,000 My daN cm 2 741,656 1 1032,342 1 836,455 1 1799,474 0,000 0,00	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN REAZI Fy -145,78 -145,78 1,61	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34 -1 339,89 -1 858,96 2 217,23 2 265,03 -1 912,24 ONI VINCOLARI C Fz kg = daN 0 1 467,09 1 546,23	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220	My daN cm 2 132,059 53,254 1 609,303 636,454 0,000 0,000 0,000 0,000 0,000 My daN cm 2 741,656 1 1032,342 1 836,455 1 799,474 0,000	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94 38,91	REAZI Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78 -145,78 1,61 -0,94	NI VINCOLARI C Fz kg = daN 1 625,48 -409,78 1 564,12 -504,97 -942,29 1 452,82 1 506,11 -998,80 ONI VINCOLARI C Fz kg = daN 2 139,02 -1 248,29 2 083,34 -1 339,89 -1 858,96 2 217,23 2 265,03 -1 912,24 ONI VINCOLARI C Fz kg = daN ONI VINCOLARI C 670,43	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7955 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7445 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220 -778,9271	My daN cm 5 2 132,059 53,254 7 1 609,303 6 636,454 9 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 1 032,342 1 1 836,455 5 1 799,474 0 0,000	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94 38,91 -9,56	Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78 -145,78 -9,94 -223,71	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7958 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7448 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518	My daN cm 53,254 1 609,303 6 636,454 0,000	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94 38,91 -9,56 -189,40	Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78 -145,78 1,61 -0,94 -223,71 -189,40	NI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7446 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000	My daN cm 53,254 7 1 609,303 6 636,454 0,000 0	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17	Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78 -145,78 1,61 -0,94 -223,71 -189,40 -253,17	ONI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7446 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 0,0000 0,0000 - SLU	My daN cm 53,254 7 1 609,303 6 36,454 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 1 032,342 1 1 336,455 1 1 799,474 0,000 0 0,000	Mz daN cm 6
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN -1,94 -99,07 -253,83 1,44 -198,28 -285,42 -289,12 -202,45 Fx kg = daN -0,99 -162,46 -415,14 0,64 -376,91 -437,67 -440,92 -380,97 Fx kg = daN -10,71 -27,94 38,91 -9,56 -189,40	Fy kg = daN -90,75 5,85 13,33 63,70 -198,27 -285,43 289,12 202,45 REAZI Fy kg = daN -146,88 11,57 19,95 108,05 -376,91 -437,68 440,92 380,98 REAZI Fy kg = daN -145,78 -145,78 1,61 -0,94 -223,71 -189,40	NI VINCOLARI C Fz kg = daN	983,12973037 1 507,85014466 1 560,62666780 1 039,02165234 COMBINAZIONE 5 Massimo kg = daN 1 933,86543210 2 302,00994499 2 349,28989815 1 986,69648537 COMBINAZIONE 6 Massimo kg = daN	- SLU Mx daN cm -2 338,5426 197,9271 1 669,6667 -874,7956 0,0000 0,0000 0,0000 - SLU Mx daN cm -2 980,3237 1 148,8802 2 045,7446 -2 295,5146 0,0000 0,0000 - SLU Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000	My daN cm 53,254 7 1 609,3030 636,454 0,0000 0,0000 0,0000 0,0000 My daN cm 7 2 741,6560 1 1336,455 1 1799,474 0,0000	Mz daN cm 6

1			DE A 7	TONE VINCOLABLA	COMPINATIONE 7	CLII		
1	Nodo N°	Fx					Mv	Mz
1			kg = daN	kg = daN	kg = daN	daN cm	daN cm	
3 36.55 -0.24 -505.52 -548.070 -462.5705 -34.313816 -34.22.335 -9.6291 -34.9 -37.599 -79.61 -36.900 -20000 -0.0000 -0.0000 -0.0000 -0.0000 -3.00000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000		-11,37	-146,26	1 632,47		-1 961,6183	1 884,6661	-9,4588
4			1,00	1 710,40				
149								
150								
151								
152								
Node N° Fx			-182,74					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	152	2/0,/1	-2/0,/1	1 360,93	1 413,75076596	0,0000	0,0000	0,0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			DF A 7	IONI VINCOLARI (OMBINATIONE 8	SLII		
1	Nodo Nº	Fv					My	Mz
1	3D	ka = daN	ka = daN	ka = daN	ka = daN	daN cm	daN cm	
2								
3				2 285.35		-3 162.8028	-3 681,4600	-20,4226
4			-2.67	-1 366.06				
149 -339.77 -339.77 -1619.48 1689.2650088 0.0000 0.0000 0.0000 0.0000 150 -403.63 -403.63 1991.93 2.072.10124343 0.0000 0.0000 0.0000 0.0000 151 -345.50 -345.50 -407.62 2.020.63 2.101.26028179 0.0000 0.0			-370,37	-1 460,12		-814,4362	1 159,3730	-13,3870
150	149		-339,77	-1 619,48				
151		-403,63	-403,63	1 991,93	2 072,10124343	0,0000	0,0000	
REAZIONI VINCOLARI COMBINAZIONE 9 - SLU		345,50	-345,50	-1 657,68	1 728,18843881	0,0000	0,0000	0,0000
Nodo N° Fx Fy Fz Massimo Mx My Mz	152			2 020,63	2 101,25028179			
Nodo N° Fx Fy Fz Massimo Mx My Mz								
1		<u>_</u>						
1	Nodo N°	Fx	Fy	Fz	Massimo	Mx	My	Mz
2				kg = daN	kg = daN		daN cm	daN cm
3				420,20				
4								
149								
150								
151								
Nodo N* Fx Fy Fy Fz Massimo Mx My Mx My Mx My Mx My Mx Mx								
Nodo N° Fx Fy Fz Massimo Mx My Mz		-94,24 67.91	94,23 67.91			0,0000		
Nodo N°	132	-07,01	07,01	-357,51	370,14311037	0,0000	0,0000	0,0000
Nodo N°								
3D kg = daN daN cm daN			RFA7I	ONI VINCOLARI C	OMBINAZIONE 10	- SLU		
1	Nodo N°	Fx					Mv	Mz
2 81,17 -2,50 -66,84 97,4336 150,8779 1,0620 3 -72,17 2,53 413,61 495,8119 510,1664 1,5654 4 2,90 47,70 60,32 -9,3402 -45,5169 1,4506 149 -22,25 -22,24 -95,94 100,96641029 0,0000 0,0000 0,0000 150 -49,12 -49,12 254,91 264,20854436 0,0000 0,0000 0,0000 151 -133,26 133,26 721,92 746,11060585 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 152 -106,48 106,49 -563,62 583,3957863 0,0000 0,0000 0,0000 150	Nodo N°	Fx kg = daN	Fv	Fz	Massimo		My daN cm	Mz daN cm
3	3D	kg = daN	Fy kg = daN	Fz kg = daN	Massimo kg = daN	Mx daN cm	My daN cm 385,0693	Mz daN cm 2.2131
149	3D 1	kg = daN -1,60	Fy kg = daN -79,74	Fz kg = daN 288,24	Massimo kg = daN	Mx daN cm -14,5194	385,0693	2,2131
150	3D 1 2	kg = daN -1,60 81,17	Fy kg = daN -79,74 -2,50	Fz kg = daN 288,24 -66,84	Massimo kg = daN	Mx daN cm -14,5194 97,4336	385,0693 150,8779	2,2131 1,0620
151	3D 1 2 3	kg = daN -1,60 81,17 -72,17	Fy kg = daN -79,74 -2,50 2,53	Fz kg = daN 288,24 -66,84 413,61	Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119	385,0693 150,8779 510,1664	2,2131 1,0620 1,5654
Nodo N° Fx Fy Fz Massimo Mx My Mz	3D 1 2 3 4	kg = daN -1,60 81,17 -72,17 2,90	Fy kg = daN -79,74 -2,50 2,53 47,70	Fz kg = daN 288,24 -66,84 413,61 60,32	Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402	385,0693 150,8779 510,1664 -45,5169	2,2131 1,0620 1,5654 1,4506 0,0000
Nodo N° Fx	3D 1 2 3 4 149	kg = daN -1,60 81,17 -72,17 2,90 -22,25	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94	Massimo kg = daN 100,96641029	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000
$ \begin{array}{ c c c c c c c c } \hline Nodo \ N^{\circ} & Fx & Fy & Fz & Massimo & Mx & My & Mz \\ \hline 3D & kg = daN & kg = daN & kg = daN & kg = daN & daN \ cm & $	3D 1 2 3 4 149 150	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92	Massimo kg = daN 100,96641029 264,20854436 746,11060585	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000
$ \begin{array}{ c c c c c c c c } \hline Nodo \ N^{\circ} & Fx & Fy & Fz & Massimo & Mx & My & Mz \\ \hline 3D & kg = daN & kg = daN & kg = daN & kg = daN & daN \ cm & $	3D 1 2 3 4 149 150	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92	Massimo kg = daN 100,96641029 264,20854436 746,11060585	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000
3D	3D 1 2 3 4 149 150	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000
1 0,09 73,23 109,14 -604,8364 177,7908 -4,2841 2 -82,86 1,57 461,14 -673,7598 -804,7802 -3,2652 3 67,36 -1,16 -106,44 -55,4317 -13,0404 -2,9083 4 -2,18 -53,02 229,95 516,2604 -406,5759 -2,8859 149 54,67 54,66 306,46 316,05737739 0,0000 0,0000 0,0000 150 26,04 26,04 -141,81 146,51505079 0,0000 0,0000 0,0000 151 104,37 -104,37 -539,06 558,89929484 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,32088873 0,0000 0,0000 0,0000 152 133,33 kg = daN kg = daN kg = daN Mx My Mz 3D kg = daN kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 <td>3D 1 2 3 4 149 150 151 152</td> <td>kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48</td> <td>Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI</td> <td>Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C</td> <td>Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863</td> <td>Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 0,0000</td> <td>385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000</td> <td>2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000</td>	3D 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000
2 -82,86 1,57 461,14 -673,7598 -804,7802 -3,2652 3 67,36 -1,16 -106,44 -55,4317 -13,0404 -2,9083 4 -2,18 -53,02 229,95 516,2604 -406,5759 -2,8859 149 54,67 54,66 306,46 316,05737739 0,0000 0,0000 0,0000 150 26,04 26,04 -141,81 146,51505079 0,0000 0,0000 0,0000 151 104,37 -104,37 -539,06 558,89929484 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,3208873 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,3208873 0,0000 0,0000 0,0000 152 133,33 kg = daN daN cm daN cm daN cm daN cm daN cm	3D 1 2 3 4 149 150 151 152 Nodo N°	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 Fy	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI O	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 0,0000 - SLU Mx	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000
3	3D 1 2 3 4 149 150 151 152 Nodo N° 3D	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI OF Ez kg = daN	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 0,0000 - SLU Mx daN cm	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000
4 -2,18 -53,02 229,95 516,2604 -406,5759 -2,8859 149 54,67 54,66 306,46 316,05737739 0,0000 0,0000 0,0000 150 26,04 26,04 -141,81 146,51505079 0,0000 0,0000 0,0000 151 104,37 -104,37 -539,06 558,89929484 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,32088873 0,0000 0,0000 0,0000 REAZIONI VINCOLARI COMBINAZIONE 12 - SLU Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN and cm daN cm daN cm daN cm 1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 -3,2435 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670	3D 1 2 3 4 149 150 151 152 Nodo N° 3D	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI OF Ez kg = daN	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz
149 54,67 54,66 306,46 316,05737739 0,0000 0,0000 0,0000 150 26,04 26,04 -141,81 146,51505079 0,0000 0,0000 0,0000 151 104,37 -104,37 -539,06 558,89929484 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,32088873 0,0000 0,0000 0,0000 Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN kg = daN kg = daN kg = daN daN cm daN cm 1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0,84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI OF Ez kg = daN 109,14 461,14	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652
150 26,04 26,04 -141,81 146,51505079 0,0000 0,0000 0,0000 151 104,37 -104,37 -539,06 558,89929484 0,0000 0,0000 0,0000 152 133,33 -133,34 705,56 730,32088873 0,0000 0,0000 0,0000 REAZIONI VINCOLARI COMBINAZIONE 12 - SLU Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0,84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 <td< td=""><td>3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3</td><td>kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36</td><td>Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16</td><td>Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI O Fz kg = daN 109,14 461,14 -106,44</td><td>Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN</td><td>Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317</td><td>385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404</td><td>2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083</td></td<>	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI O Fz kg = daN 109,14 461,14 -106,44	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083
151 104,37 -104,37 -539,06 558,89929484 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859
Texation	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000
Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0,84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000
Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 0.89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0.84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000
Nodo N° Fx Fy Fz Massimo Mx My Mz 3D kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 0.89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0.84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000
3D kg = daN kg = daN kg = daN kg = daN daN cm daN cm daN cm 1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0,84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000
1 0,89 55,35 -22,82 -432,5028 18,1427 -3,3435 2 -65,56 0,84 357,18 -521,7060 -622,9984 -4,5762 3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 -0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000
3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 667,36 -2,18 54,67 26,04 104,37 133,33	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 -0,0000 0,0000 -0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000
3 55,27 -1,60 -6,67 73,1921 125,5660 -1,9670 4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 -0,0000 -0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz
4 -1,09 -80,09 366,13 662,7419 -556,2989 -3,3622 149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 35 1 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 -516,2504 -60000 0,0000 0,0000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -500000 -50000 -50000 -50000 -50000 -50000 -50000 -50000 -500000 -500000 -500000 -500000 -500000 -500000 -5000000 -5000000 -500000000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 18,1427	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz
149 113,53 113,53 621,54 641,94406843 0,0000 0,0000 0,0000 150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 35 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89 -65,56	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN REAZI Fy kg = daN -133,34	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 -516,2504 -673,7598 -55,4317 -516,2504 -521,7060	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 18,1427 -622,9984	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2845 -2,8859 -2,8859 -2,8859 -2,8859 -3,3455 -4,5762
150 84,60 84,60 -455,03 470,49493136 0,0000 0,0000 0,0000 151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 35 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 4 4 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89 -65,56 55,27	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN REAZI -1,60	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN -22,82 357,18 -6,67	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 -516,2504 -521,7060 73,1921	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 18,1427 -622,9984 125,5660	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -3,3435 -4,5762 -1,9670 -3,3622
151 65,34 -65,34 -330,61 343,28269893 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 35 1 2 3 4 149 150 151 152 Nodo N° 3D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89 -65,56 55,27 -1,09	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN REAZI -1,16 -53,02 -1,16 -53,02 -1,16 -53,02 -1,16 -53,02 -1,16 -53,02 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16 -1,16	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN -22,82 kg = daN -22,82 357,18 -6,67 366,13	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 -516,2604 0,0000 0,0000 0,0000 0,0000 -3,0000 0,0000 -3,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 18,1427 -622,9984 125,5660 -556,2989	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -3,3435 -4,5762 -1,9670 -3,3622 0,0000
152 94,66 -94,67 499,44 517,07019844 0,0000 0,0000 0,0000	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89 -65,56 55,27 -1,09 113,53	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN REAZI -53,02 -104,37 -133,34 REAZI -1,60 -80,09 113,53	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN -22,82 kg = daN -22,82 357,18 -6,67 366,13 621,54	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -432,5028 -521,7060 73,1921 662,7419 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 18,1427 -622,9984 125,5660 -556,2989 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000 0,0000 -4,5762 -1,9670 -3,3622 0,0000 0,0000
	3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -1,60 81,17 -72,17 2,90 -22,25 -49,12 -133,26 -106,48 Fx kg = daN 0,09 -82,86 67,36 -2,18 54,67 26,04 104,37 133,33 Fx kg = daN 0,89 -65,56 55,27 -1,09 113,53 84,60 65,34	Fy kg = daN -79,74 -2,50 2,53 47,70 -22,24 -49,12 133,26 106,49 REAZI Fy kg = daN 73,23 1,57 -1,16 -53,02 54,66 26,04 -104,37 -133,34 REAZI Fy kg = daN 8EAZI -1,60 -80,09 113,53 84,60 -65,34	Fz kg = daN 288,24 -66,84 413,61 60,32 -95,94 254,91 721,92 -563,62 ONI VINCOLARI C Fz kg = daN 109,14 461,14 -106,44 229,95 306,46 -141,81 -539,06 705,56 ONI VINCOLARI C Fz kg = daN -22,82 kg = daN -22,82 357,18 -6,67 366,13 621,54 -455,03 -330,61	Massimo kg = daN 100,96641029 264,20854436 746,11060585 583,39578863 COMBINAZIONE 11 Massimo kg = daN 316,05737739 146,51505079 558,89929484 730,32088873 COMBINAZIONE 12 Massimo kg = daN 641,94406843 470,49493136 343,28269893	Mx daN cm -14,5194 97,4336 495,8119 -9,3402 0,0000 0,0000 0,0000 - SLU Mx daN cm -604,8364 -673,7598 -55,4317 516,2604 0,0000 0,0000 0,0000 - SLU Mx daN cm -432,5028 -521,7060 73,1921 662,7419 0,0000 0,0000 0,0000	385,0693 150,8779 510,1664 -45,5169 0,0000 0,0000 0,0000 0,0000 My daN cm 177,7908 -804,7802 -13,0404 -406,5759 0,0000 0,0000 0,0000 0,0000 0,0000 18,1427 -622,9984 125,5660 -556,2989 0,0000 0,0000 0,0000	2,2131 1,0620 1,5654 1,4506 0,0000 0,0000 0,0000 0,0000 Mz daN cm -4,2841 -3,2652 -2,9083 -2,8859 0,0000 0,0000 0,0000 0,0000

2 49,99 -2,19 -39,71	daN cm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	daN cm
1 -2,47 6,27 465,28 2 -7,65 0,27 306,81 3 -1,37 2,05 50,34 4 -0,86 61,62 -127,71 149 -102,26 -102,26 -527,51 546,97182445 150 -129,19 -129,19 685,07 709,01773561 151 20,81 -20,81 -98,10 102,41921051 152 47,71 -47,70 255,04 263,81159461 REAZIONI VINCOLARI COMBINAZIONE 14 - SLU Nodo N° Fx Fy Fz Massimo N 3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41 24,41 24,41 2 49,99 -2,19 -39,71 -39,71	-0,0534
2 -7,65 0,27 306,81 3 -1,37 2,05 50,34 4 -0,86 61,62 -127,71 149 -102,26 -102,26 -527,51 546,97182445 150 -129,19 -129,19 685,07 709,01773561 151 20,81 -20,81 -98,10 102,41921051 152 47,71 -47,70 255,04 263,81159461 REAZIONI VINCOLARI COMBINAZIONE 14 - SLU Nodo N° Fx Fy Fz Massimo N 3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41 2 49,99 -2,19 -39,71	-0,0449 -0,0514 0,0002 0,0069 0,0075 -0,0002 -0,0091 0,0100 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3 -1,37 2,05 50,34 4 -0,86 61,62 -127,71 149 -102,26 -102,26 -527,51 546,97182445 150 -129,19 -129,19 685,07 709,01773561 151 20,81 -20,81 -98,10 102,41921051 152 47,71 -47,70 255,04 263,81159461 REAZIONI VINCOLARI COMBINAZIONE 14 - SLU Nodo N° Fx Fy Fz Massimo N 3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41 2 49,99 -2,19 -39,71	0,0069 0,0075 -0,0002 -0,0091 0,0100 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
4 -0,86 61,62 -127,71 149 -102,26 -102,26 -527,51 546,97182445 150 -129,19 -129,19 685,07 709,01773561 151 20,81 -20,81 -98,10 102,41921051 152 47,71 -47,70 255,04 263,81159461 REAZIONI VINCOLARI COMBINAZIONE 14 - SLU Nodo N° Fx Fy Fz Massimo N 3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41 2 49,99 -2,19 -39,71	-0,0091 0,0100 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
149	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mx My Mz
150	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mx My Mz
151 20,81 -20,81 -98,10 102,41921051	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mx My Mz
Nodo N° Fx Fy Fz Massimo N	0,0000 0,0000 0,0000 Mx My Mz
REAZIONI VINCOLARI COMBINAZIONE 14 - SLU Nodo N° Fx Fy Fz Massimo N 3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41	Mx My Mz
Nodo № Fx Fy Fz Massimo N 3D kg = daN daN cm 1 0,20 -53,31 25,41 </td <td></td>	
Nodo № Fx Fy Fz Massimo N 3D kg = daN daN cm 1 0,20 -53,31 25,41 </td <td></td>	
3D kg = daN kg = daN kg = daN kg = daN daN cm 1 0,20 -53,31 25,41 2 49,99 -2,19 -39,71	
1 0,20 -53,31 25,41 2 49,99 -2,19 -39,71	daN cm daN cm
2 49,99 -2,19 -39,71	
1 3 -4168 0.56 382.91	58,1309 92,1000 -2,4409
	497,9560 537,2636 1,4272
	396,7835 -398,9674 -0,7896
149 93,95 93,95 522,78 539,39799606	0,0000 0,0000 0,0000
150 66,00 66,00 -358,99 370,92315110	0,0000 0,0000 0,0000
151 -109,28 109,28 596,72 616,40752146	0,0000 0,0000 0,0000
152 -81,20 81,20 -432,02 447,02583755	0,0000 0,0000 0,0000
REAZIONI VINCOLARI COMBINAZIONE 15 - SLU	
Nodo N° Fx Fy Fz Massimo N	Mx My Mz
3D kg = daN kg = daN kg = daN kg = daN daN cm	
1 -1,72 46,80 371,96 -	-659,5981 492,4712 -3,4366
2 -51,67 1,27 434,01 -	-634,4571 -746,0024 0,2377
3 36,86 0,81 -75,74	-57,5758 -40,1375 -2,7701
	110,1367 -53,1254 -0,6457
149 -61,53 -61,53 -312,26 324,15933687	0,0000 0,0000 0,0000
150 -89,08 -89,08 472,09 488,60869421	0,0000 0,0000 0,0000
151 80,39 -80,39 -413,86 429,19021538	0,0000 0,0000 0,0000
<u>152</u> 108,05 -108,05 573,96 593,95076995	0,0000 0,0000 0,0000
REAZIONI VINCOLARI COMBINAZIONE 16 - SLU	
Nodo N° Fx Fy Fz Massimo	Mx My Mz
3D kg = daN kg = daN kg = daN kg = daN daN cn	m daN cm daN cm
1 0,95 -12,78 -67,90	-85,1527 -39,6891 -0,3013
2 5,97 -1,19 87,49	-127,6110 -140,0629 -4,1323
3 -3,44 -0,68 256,83	371,1701 421,8835 0,3675
4 1,58 -66,94 417,98	598,4081 -552,2020 -2,2334
149 134,68 134,68 738,02 762,20492628	0,0000 0,0000 0,0000
	0,0000 0,0000 0,0000
151 -49,70 49,70 280,96 289,61876613	0,0000 0,0000 0,0000
152 -20,85 20,85 -113,11 116,88781196	0,0000 0,0000 0,0000
DEATION VINCOLARI COMPINATIONS 4 CLAS	
REAZIONI VINCOLARI COMBINAZIONE 1 - SLV	My M. M.
	Mx My Mz m daN cm daN cm
1 -1,71 -5,35 441,72	-698,8331 626,0708 -2,4762
2 -2,14 -1,21 437,54	-636,3507 -727,8068 -2,5221
3 -5,93 1,65 373,03	528,4000 601,8052 -1,8204
4 1,08 -3,72 353,17	604,0248 -535,0430 -1,8215
149 36,15 36,15 229,03 234,66721736	0,0000 0,0000 0,0000
150 -27,49 -27,49 140,50 145,78020710	0,0000 0,0000 0,0000
151 -31,88 31,88 195,56 200,68693489	0,0000 0,0000 0,0000
152 31,91 -31,91 174,68 180,41666085	0,0000 0,0000 0,0000
102 01,01 -01,01 114,00 100,41000000	
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	
	Mx My Mz
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	,
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV Nodo N° Fx Fy Fz Massimo 3D kg = daN kg = daN kg = daN kg = daN daN cn	m daN cm daN cm
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118 759,2601 868,5136 -2,7576
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118 759,2601 868,5136 -2,7576 864,9282 -764,2560 -2,6898
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118 759,2601 868,5136 -2,7576 864,9282 -764,2560 -2,6898 0,0000 0,0000 0,0000
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118 759,2601 868,5136 -2,7576 864,9282 -764,2560 -2,6898 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
REAZIONI VINCOLARI COMBINAZIONE 2 - SLV	m daN cm daN cm -969,6482 862,7079 -3,5183 -873,2116 -1 002,8351 -3,5118 759,2601 868,5136 -2,7576 864,9282 -764,2560 -2,6898 0,0000 0,0000 0,0000

		RFA7	IONI VINCOLARI (COMBINAZIONE 3	- SI V		
Nodo N°	Fx	Fy	Fz		Mx	Му	Mz
3D			kg = daN			daN cm	daN cm
1	-1,28				-2 067,7274		
2	-98,33				434,7879		
3	-251,45				1 438,8066	1 342,5952	
4	0,82				-1 135,6990		
149	-211,69			1 066,63376091			
150	-273,60			1 439,51785710			
151	-277,30						
152	-215,82	215,82	-1 077,47	1 119,86966015	0,0000	0,0000	0,0000
		RFA7	IONI VINCOLARI (COMBINAZIONE 4	- SLV		
Nodo N°	Fx	Fy			Mx	Му	Mz
3D		kg = daN	kg = daN			daN cm	
1	-1,94				-2 338,5426		
2	-99,07	5,85	-409,78		197,9271	53,2547	-6,8167
3	-253,83				1 669,6667		-5,0015
4	1,44				-874,7955		
149	-198,28						
150	-285,42						
151	-289,12				_	,	,
152	-202,45	202,45	-998,80	1 039,02165234	0,0000	0,0000	0,0000
		RFΔ7	IONI VINCOLARI (COMBINAZIONE 5	SIV		
Nodo N°	Fx	Fy	Fz	Massimo	Mx	Му	Mz
		kg = daN		kg = daN			daN cm
1	-0,99	-146,88			-2 980,3237		
2	-162,46				1 148,8802		
3	-415,14				2 045,7445		
4	0,64	108,05			-2 295,5146		
149	-376,91	-376,91	-1 858,96	1 933,86543210	0,0000	0,0000	0,0000
150	-437,67	-437,68		2 302,00994499		0,0000	0,0000
151	-440,92			2 349,28989815			
152	-380,97	380,98	-1 912,24	1 986,69648537	0,0000	0,0000	0,0000
		55.5					
Nada Nº	E.,			COMBINAZIONE 6			Ma
Nodo N°	Fx	Fy	Fz	Massimo	Mx		Mz
3D	kg = daN	Fy kg = daN	Fz kg = daN	Massimo kg = daN	Mx daN cm	daN cm	daN cm
3D 1	kg = daN -10,71	Fy kg = daN -145,78	Fz kg = daN 1 467,09	Massimo kg = daN	Mx daN cm -1 690,8031	daN cm 1 648,0289	daN cm -8,4168
3D 1 2	kg = daN -10,71 -27,94	Fy kg = daN -145,78 1,61	Fz kg = daN 1 467,09 1 546,23	Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220	daN cm 1 648,0289 -2 499,9987	-8,4168 -13,2624
3D 1 2 3	kg = daN -10,71 -27,94 38,91	Fy kg = daN -145,78 1,61 -0,94	Fz kg = daN 1 467,09 1 546,23 -670,43	Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271	daN cm 1 648,0289 -2 499,9987 -909,2790	daN cm -8,4168 -13,2624 35,2510
3D 1 2 3 4	kg = daN -10,71 -27,94 38,91 -9,56	Fy kg = daN -145,78 1,61 -0,94 -223,71	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80	Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066	daN cm -8,4168 -13,2624 35,2510 -8,7608
3D 1 2 3 4 149	kg = daN -10,71 -27,94 38,91 -9,56 -189,40	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08	Massimo kg = daN 919,93717042	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000
3D 1 2 3 4	kg = daN -10,71 -27,94 38,91 -9,56	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36	Massimo kg = daN 919,93717042 1 301,57052788	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000
3D 1 2 3 4 149 150	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - \$\$SLV\$	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N°	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 0,0000 - SLV Mx daN cm	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm
3D 1 2 3 4 149 150 151 152 Nodo N° 3D	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183 -2 389,0827	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - \$0,0000 0,0000 - \$1,0000 -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 -0,0000 -SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 -0,0000 0,0000 -0,0000 -0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy REAZ	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 -0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - 0,0000 - 0,0000 - 0,0000 - SLV Mx daN cm	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 35D 151 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 2 329,3342 -3 681,4600	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 152 Nodo N° 3D 1 2 3 3 4 149 150 151 152 Nodo N° 3D 1 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13 68,79	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49 -2,67	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35 -1 366,06	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - 0,0000 - 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 -1 916,6684	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49 -2,67 -370,37	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35 -1 366,06 -1 460,12	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo kg = daN	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 1,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 10,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 10,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13 68,79 -16,66	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49 -2,67 -370,37 -339,77	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35 -1 366,06 -1 460,12 -1 619,48	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo kg = daN 1 689,26560088	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -650,4783 -814,4362	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 10,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 149 149 149 149 149 149 149	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13 68,79 -16,66 -339,77	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49 -2,67 -370,37 -403,63	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35 -1 366,06 -1 460,12 -1 619,48 1 991,93	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo kg = daN 1 689,26560088 2 072,10124343	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -548,0670 -7548,0670	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	kg = daN -10,71 -27,94 38,91 -9,56 -189,40 -253,17 194,55 257,34 Fx kg = daN -11,37 -28,68 36,53 -8,94 -175,99 -265,00 182,73 270,71 Fx kg = daN -16,72 -45,13 68,79 -16,66 -339,77 -403,63	Fy kg = daN -145,78 1,61 -0,94 -223,71 -189,40 -253,17 -194,55 -257,34 REAZ Fy kg = daN -146,26 1,00 -0,24 -223,35 -175,99 -265,00 -182,74 -270,71 REAZ Fy kg = daN -239,39 3,49 -2,67 -370,37 -403,63 -345,50	Fz kg = daN 1 467,09 1 546,23 -670,43 -734,80 -880,08 1 251,36 -916,38 1 282,25 IONI VINCOLARI (Fz kg = daN 1 632,47 1 710,40 -505,52 -577,11 -798,61 1 317,63 -847,51 1 360,93 IONI VINCOLARI (Fz kg = daN 2 150,67 2 285,35 -1 366,06 -1 460,12 -1 619,48 1 991,93 -1 657,68	Massimo kg = daN 919,93717042 1 301,57052788 956,79538147 1 332,89545813 COMBINAZIONE 7 Massimo kg = daN 836,49683547 1 369,89092625 886,03309832 1 413,75076596 COMBINAZIONE 8 Massimo kg = daN 1 689,26560088 2 072,10124343 1 728,18843881	Mx daN cm -1 690,8031 -2 152,2220 -778,9271 -247,0518 0,0000 0,0000 0,0000 - 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 - SLV Mx daN cm -1 961,6183 -2 389,0827 -548,0670 13,8516 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 - SLV Mx daN cm -2 352,1164 -3 162,8028 -1 650,4783 -814,4362 0,0000 0,0000	daN cm 1 648,0289 -2 499,9987 -909,2790 481,6066 0,0000 0,0000 0,0000 0,0000 My daN cm 1 884,6661 -2 775,0270 -642,5706 252,3936 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 2 329,3342 -3 681,4600 -1 916,6684 1 159,3730 0,0000 0,0000 0,0000 0,0000	daN cm -8,4168 -13,2624 35,2510 -8,7608 0,0000 0,0000 0,0000 0,0000 Mz daN cm -9,4588 -14,2521 34,3138 -9,6291 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 -12,3771 -20,4226 59,9652 -13,3870 0,0000 0,0000 0,0000 0,0000

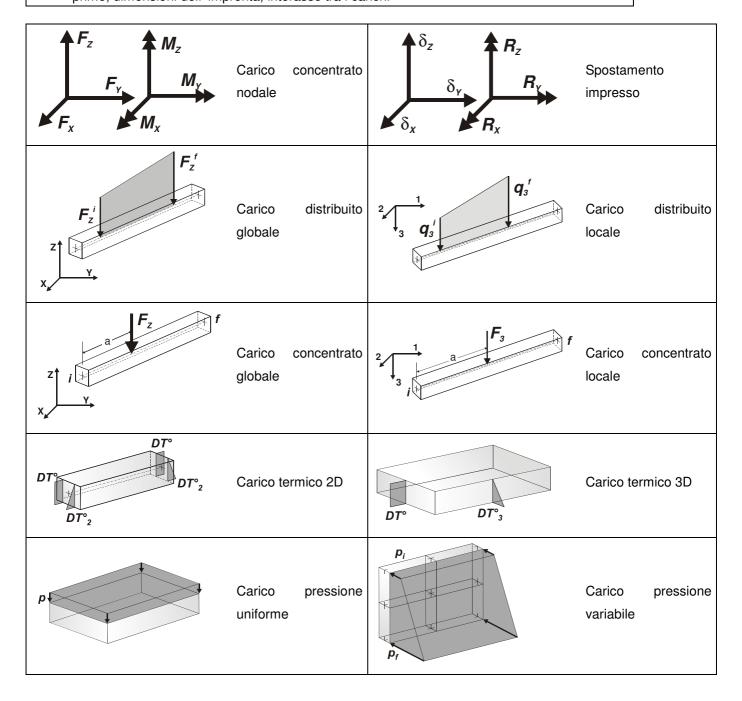
		-	DEAT	TONE VINCOLARE	COMBINAZIONE 9	CLV		1
Nodo N°	Fx			Fz	Massimo	- SLV Mx	My	Mz
	kg = daN	kg = daN		kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-1,9	3	-42,37	358,24		-215,6033	472,5159	
2	43,2		-1,41			-129,1869	,	
3	-41,7		2,28			325,8900		
4	1,3		50,18			-30,1973		
149	-48,8		-48,80					
150 151	-75,7 -67,7		-75,76 67,74					
152	-40,8		40,84					
132	-40,0	3	40,04	-215,00	222,01014003	0,0000	0,0000	0,0000
			REAZ	ONI VINCOLARI	COMBINAZIONE 10	- SLV		
Nodo N°	Fx	Fy		Fz	Massimo	Mx	Му	Mz
	kg = daN	kg = daN		kg = daN	kg = daN	daN cm		daN cm
1	-1,3		-55,11			-93,5036		
2	55,6		-1,94			-19,9638		
3	-50,2		1,97			418,5379		
149	2,1 -9,4		30,17 -9,46			72,0719 0,0000		
150	-9,4		-36.63					
151	-93,8	_	93,85	,	,	,		,
152	-66,7		66,70					
	- 2,,						-,	.,
		: -			COMBINAZIONE 11			
Nodo N° 3D	Fx kg = daN	Fy		Fz kg = daN	Massimo kg = daN	Mx daN cm	My daN cm	daN cm
1	kg = dalN -0.1	kg = daN	48,60			-525,8522		
2	-57,3		1,01			-556,3624		
3	45,4		-0,60			21,8423		
4	-1,3		-35,50			434,8482		
149	41,8		41,88					
150	13,5		13,55					
151	64,9		-64,95	-329,52	342,08757255			
152	93.5	r I	00.55	404.00				
102	33,0	5	-93,55	494,65	512,04081364	0,0000	0,0000	0,0000
102	33,5	5					0,0000	0,0000
	Fx	-	REAZ	ONI VINCOLARI	COMBINAZIONE 12	- SLV	0,0000 My	0,0000 Mz
Nodo N°		-	REAZ	ONI VINCOLARI Fz kg = daN	COMBINAZIONE 12 Massimo kg = daN	- SLV Mx daN cm	My daN cm	Mz daN cm
Nodo N° 3D	Fx kg = daN 0,4	Fy kg = daN	REAZ / 35,87	ONI VINCOLARI Fz kg = daN 39,14	COMBINAZIONE 12 Massimo kg = daN	- SLV Mx daN cm -403,7524	My daN cm 90,3441	Mz daN cm -2,6499
Nodo N° 3D 1 2	Fx kg = daN 0,4 -44,5	Fy kg = daN 1 1	REAZ / 35,87 0,48	ONI VINCOLARI Fz kg = daN 39,14 311,30	COMBINAZIONE 12 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393	My daN cm 90,3441 -524,9704	Mz daN cm -2,6499 -3,4798
Nodo N° 3D 1 2 3	Fx kg = daN 0,4 -44,5 36,5	Fy kg = daN 1 1 1 0	35,87 0,48 -0,91	ONI VINCOLARI Fz kg = daN 39,14 311,30	COMBINAZIONE 12 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902	My daN cm 90,3441 -524,9704 157,7946	Mz daN cm -2,6499 -3,4798 -1,5436
Nodo N° 3D 1 2 3 4	Fx kg = daN 0,4 -44,5 36,5 -0,6	Fy kg = daN 1 1 0	REAZ / 35,87 0,48 -0,91 -55,50	ONI VINCOLARI (1) Fz kg = daN 39,14 311,30 39,00 305,15	COMBINAZIONE 12 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174	My daN cm 90,3441 -524,9704 157,7946 -457,4179	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691
Nodo N° 3D 1 2 3 4 149	Fx kg = daN 0,4 -44,5 36,5 -0,6	Fy kg = daN 1 1 0 9	7 35,87 0,48 -0,91 -55,50 81,22	Fz kg = daN 39,14 311,30 39,00 305,18 449,82	COMBINAZIONE 12 Massimo kg = daN 464,25610556	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000
Nodo N° 3D 1 2 3 4 149 150	Fx kg = daN 0,4 -44,5 36,5 -0,6 81,2 52,6	Fy kg = daN 1 1 0 9 2	35,87 0,48 -0,91 -55,50 81,22 52,69	ONI VINCOLARI (1) Fz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN 0,4 -44,5 36,5 -0,6 81,2 52,6 38,8	Fy kg = daN 1 1 0 9 2 9	35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85	ONI VINCOLARI Fz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90 -190,32	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150	Fx kg = daN 0,4 -44,5 36,5 -0,6 81,2 52,6	Fy kg = daN 1 1 0 9 2 9	35,87 0,48 -0,91 -55,50 81,22 52,69	ONI VINCOLARI 9 Fz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90 -190,32	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN 0,4 -44,5 36,5 -0,6 81,2 52,6 38,8	Fy kg = daN 1 1 0 9 2 9	REAZ / 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69	Pz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90 -190,32 356,95 ONI VINCOLARI	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	Fx kg = daN 0,4 44,5 36,5 -0,5 81,2 52,6 38,6 67,6	Fy kg = daN 1 1 0 9 2 9 5 8	REAZ / 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ	ONI VINCOLARI (1) Fz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90 -190,32 356,95 ONI VINCOLARI (1) Fz	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D	Fx kg = daN 0,4 44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN	Fy kg = daN 1 1 0 9 2 9 5 8 Fy kg = daN	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ	Fz kg = daN 39,14 311,30 39,00 305,18 449,82 -284,90 -190,32 356,98 IONI VINCOLARI	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D	Fx kg = daN 0,4 44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6	Fy kg = daN 1 1 1 0 9 9 2 9 5 8 Fy kg = daN 1	35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ	Fz kg = daN 39,14 311,33 39,00 305,15 449,82 -284,90 -190,32 356,99 ONI VINCOLARI Fz kg = daN 390,30	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2	Fx kg = daN 0,4 -44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6 -6,4 -6,4	Fy kg = daN 1 1 1 0 9 9 2 9 9 5 8 8 Fy kg = daN	35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ	Fz kg = daN 39,14 311,33 39,00 305,16 449,82 -284,90 -190,32 356,99 ONI VINCOLARI Fz kg = daN 390,30 277,56	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 3 4 149 3D 1 2 3	Fx kg = daN 0,4 -44,5 -36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6 -6,4 -1,3	Fy kg = daN 1 1 1 0 0 9 9 2 9 5 8 8 Fy kg = daN 1 1 6 0 0	35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ /	Fz kg = daN 39,14 311,30 39,00 305,15 449,82 -284,90 -190,32 356,95 ONI VINCOLARI Fz kg = daN 390,30 277,55 77,93	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 4 4 4	Fx kg = daN 0,4 -44,5 -36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6 -6,4 -1,3 -0,5	Fy kg = daN 1 1 1 0 0 9 2 2 9 5 5 8 8 Fy kg = daN 1 1 6 0 0 7 7	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53	Fz kg = daN 39,14 311,30 39,00 305,14 449,82 -284,90 -190,32 356,99 ONI VINCOLARI (Fz kg = daN 390,30 277,58 77,93 -51,54	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149	Fx kg = daN	Fy kg = daN 1 1 0 9 9 2 9 5 8 8 Fy kg = daN 1 1 6 0 0 7 5 5	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95	Fz kg = daN 39,14 311,30 39,00 305,18 449,82 -284,90 -190,32 356,99 ONI VINCOLARI Fz kg = daN 390,30 277,58 77,93 -51,54 -317,07	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 4 4 4	Fx kg = daN 0,4 -44,5 -36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6 -6,4 -1,3 -0,5	Fy kg = daN 1 1 0 9 9 2 9 9 5 8 8 Fy kg = daN 1 1 6 0 0 7 5 6 6	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53	Section Sect	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 -SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150	Fx kg = daN 0,4 -44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,0 -6,4 -1,5 -0,5 -62,5 -90,7	Fy kg = daN 1 1 0 9 2 9 5 8 8 Fg kg = daN 1 1 6 0 0 7 5 6 6 5 5	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16	Section Sect	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 -5LV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151	Fx kg = daN 0,4 -44,5 -36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,0 -6,4 -1,3 -0,5 -62,5 -90,7	Fy kg = daN 1 1 0 9 2 9 5 8 8 Fg kg = daN 1 1 6 0 0 7 5 6 6 5 5	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38	Section Sect	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150	Fx kg = daN 0,4 -44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,0 -6,4 -1,3 -0,5 -62, -90,7 36,3	Fy kg = daN 1 1 0 9 2 9 9 5 8 8 kg = daN 1 6 0 0 7 7 5 6 6 5 8 8	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ	ONI VINCOLARI Fz kg = daN 39,14 311,30 39,00 305,14 449,82 -284,90 -190,32 356,99 ONI VINCOLARI Fz kg = daN 390,30 277,55 77,95 -51,54 -317,07 476,09 -35,18 193,96 ONI VINCOLARI 193,96 ONI VINCOLARI	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 0,0000 - SLV	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N°	Fx kg = daN 0,4 -44,5 -36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,0 -6,4 -1,3 -0,5 -62,9 -90,7 -91,36,3	Fy kg = daN 1 1 0 9 2 9 5 8 8 Fy kg = daN 1 6 6 0 7 7 5 6 6 5 8 8	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ	ONI VINCOLARI Fz kg = daN 39,14 311,30 39,00 305,14 449,82 -284,90 -190,32 356,99 ONI VINCOLARI Fz kg = daN 390,30 277,59 -51,54 -317,00 476,09 -35,18 193,96 ONI VINCOLARI Fz	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D Nodo N°	Fx kg = daN 0,4 -44,5 36,5 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,0 -6,4 -1,3 -0,5 -62,9 -90,7 9,1 36,3	Fy kg = daN 1 1 1 0 9 2 9 5 8 8	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ	ONI VINCOLARI Fz kg = daN	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -540,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 151 152	Fx kg = daN	Fy kg = daN 1 1 0 9 2 9 5 8 8	REAZ / 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ / 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ / -38,13	ONI VINCOLARI Fz kg = daN	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 133,2877	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN	Fy kg = daN 1 1 1 0 9 2 9 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ /	ONI VINCOLARI Fz kg = daN	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410 -42,0483	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 133,2877 -29,6208	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 151 152	Fx kg = daN	Fy kg = daN 1 1 1 0 9 2 9 5 8 8	REAZ / 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ / 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ / -38,13	Section Sect	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 133,2877 -29,6208 458,1654	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 150 151 150 151 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	Fx kg = daN	Fy kg = daN 1 1 1 0 9 9 2 9 5 5 8 8	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ / -38,13 -1,71 0,59 -23,15 68,17	Fz kg = daN 39,14 311,33 39,00 305,15 449,82 -284,90 -190,32 356,95	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410 -42,0483 420,2104	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 My daN cm 133,2877 -29,6208 458,1654	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152	Fx kg = daN 0,4 -44,9 36,9 -0,5 81,2 52,6 38,6 67,6 Fx kg = daN -2,6 -6,4 -1,3 -0,5 -62,9 -90,1 36,3 Fx kg = daN -2,6 -4,0 -6,4 -1,3 -0,5 -62,9 -90,1 -62,9 -90,1 -90,6 -90,1 -9	Fy kg = daN 1 1 0 0 9 9 2 9 5 8 8 Fy kg = daN 1 1 6 0 0 7 7 5 5 6 6 5 5 8 8 Fy kg = daN 4 4 5 5 0 0 7 9 9	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ 7 -38,13 -1,71 0,59 -23,15 68,17 40,29	Fz kg = daN 39,14 311,33 39,00 305,15 449,82 -284,90 -190,32 356,95	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410 -42,0483 420,2104 354,1519 0,0000 0,0000 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 133,2877 -29,6208 458,1654 -348,2579 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 1 2 3 4 149 150 151 152 Nodo N° 3D 149 150 151 152	Fx kg = daN	Fy kg = daN 1 1 0 0 9 9 2 9 5 8 8 Fy kg = daN 1 1 6 0 0 7 7 5 5 6 6 5 5 8 8 Fy kg = daN 4 4 5 5 0 0 7 7 9 9 5 5	REAZ 35,87 0,48 -0,91 -55,50 81,22 52,69 -38,85 -67,69 REAZ 4,33 0,06 1,64 43,53 -62,95 -90,16 -9,15 -36,38 REAZ / -38,13 -1,71 0,59 -23,15 68,17	Fz kg = daN 39,14 311,33 39,00 305,15 449,82 -284,90 -190,32 356,95 ONI VINCOLARI Fz kg = daN 390,30 277,55 77,93 -51,54 -317,07 476,05 -35,16 193,96 ONI VINCOLARI Fz kg = daN Fz kg = daN 74,37 275,21 383,94 -220,84 428,85 428,85 428,85 428,85 319,74 220,84 428,85 428,85 428,85 319,74 220,84 428,85 428,85 428,85 428,85 319,74 220,84 428,85 428,85 428,85 428,85 428,85 428,85 319,74 428,85	COMBINAZIONE 12 Massimo kg = daN 464,25610556 294,48024992 198,08862369 369,59581553 COMBINAZIONE 13 Massimo kg = daN 329,33476804 492,86453525 37,48370042 200,66468815 COMBINAZIONE 14 Massimo kg = daN Massimo kg = daN	- SLV Mx daN cm -403,7524 -447,1393 114,4902 537,1174 0,0000 0,0000 0,0000 - SLV Mx daN cm -466,6401 -406,1253 111,3841 13,2546 0,0000 0,0000 0,0000 - SLV Mx daN cm -59,6410 -42,0483 420,2104 354,1519 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	My daN cm 90,3441 -524,9704 157,7946 -457,4179 0,0000 0,0000 0,0000 0,0000 My daN cm 510,2933 -466,1797 123,5382 3,3438 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 133,2877 -29,6208 458,1654 -348,2579 0,0000 0,0000	Mz daN cm -2,6499 -3,4798 -1,5436 -2,5691 0,0000 0,0000 0,0000 0,0000 Mz daN cm -1,5659 1,0867 -1,4627 0,3395 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

		DE A 71	ONLVINCOLADI O	OMBINAZIONE 15	CLV		
Nodo N°	Fx	Fv	Fz Fz	Massimo	Mx	Mv	Mz
3D	kg = daN	- 1	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-1,48	31,62	323,00		-559,7147		
2	-36,63	0,79	368,72		-534,2780		
3	24,83	0,78	-12,58		20,1698		-2,1942
4	-1,38	17,83	15,06		152,7683		
149	-35,75	-35,75	-173,43				
150	-63,37	-63,37	333,94				
151	48,96	-48,96					
152	76,70	-76,70	406,87	421,07782426			
			,		·	·	
		REAZI	ONI VINCOLARI O	OMBINAZIONE 16	- SLV		
Nodo N°	Fx	Fy	Fz	Massimo	Mx	My	Mz
3D	kg = daN	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	0,49	-10,84	7,07		-152,7157	52,5667	-0,5050
2	4,78	-0,99	116,75		-170,2010	-187,7227	-3,2899
3	-3,51	-0,27	229,23		328,9961	373,5879	0,1198
4	1,29	-48,85	341,81		493,6656	-455,4366	-1,7748
149	95,37	95,37	527,59	544,55734080	0,0000	0,0000	
150	67,08	67,08	-362,98	375,17613841	0,0000	0,0000	
151	-38,04	38,04	218,04	224,57810139	0,0000	0,0000	0,0000
152	-9,53	9,53	-52,02	53,74083645	0,0000	0,0000	0,0000

Dalle combinazioni riportate precedentemente sono state estrapolate le combinazioni più significative. Tali combinazioni verranno applicate sulla platea di fondazione non fattorizzate in quanto tali forze derivano dall'analisi agli SLU e SLV della sovrastruttura. I carichi aggiuntivi ,come il carico permanente dato dal terreno, che sarà riportato sulla platea, ed il carico del conteiner, verranno fattorizzati secondo le "Norme tecniche per le costruzioni" del 17 Gennaio 2018 in quanto non necessari per il dimensionamento della sovrastruttura.

			Combinazione	1		
Nodo N°	Fx	Fy	Fz	Mx	My	Mz
	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	16,7151615	239,3926829	-2150,674582	-2 352,1164	2 329,3342	-12,3771
2	162,4593884	11,56988461				-20,4226
3	415,1380062	19,94519494	-2083,339691	2 045,7445	1 836,4552	-5,5602
4	16,6602619	370,3681529	-1460,122824	-814,4362	1 159,3730	-13,3870
149	376,9106865	376,9050241	-1858,955741			
150	437,6745224	437,6809895	-2217,233896			
151	440,9236014	440,9188628	-2265,025377			
152	407,6203108	407,6202512	-2020,629644			
			Combinazione	2		
Nodo N°	Fx	Fy	Fz	Mx	My	Mz
	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	0,03631413	4,328370094	-7,073462009	-152,7157	52,5667	-0,5050
2	2,142667072	0,062345294	-7,403829601	-19,9638	2,0358	0,3042
3	1,30400341	0,236846623	-6,671475712	73,1921	125,5660	-1,9670
4	0,574728358	3,361172508	-14,88348097	-30,1973	5,3250	1,1338
149	9,461979382	9,460495785	-29,00246903			
150	13,5504026	13,55195884	-75,82151145			
151	9,150832891	9,151030332	-35,17881036			
152	9,529732168	9,529232979	-52,02360451			
			Combinazione		.,	
Nodo N°	Fx	Fy	Fz	Mx	My	Mz
	kg = daN	kg = daN	•	daN cm	daN cm	daN cm
1	-0,9927					
3	-415,1380					
4	0,6383				1 799,4748	65,2912
149	-376,9107					
150	-437,6745					
151	-440,9236					
152	-380,9741	380,9798	1 912,2437			

			Combinazione	4		
Nodo N°	Fx	Fy	Fz	Mx	My	Mz
	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-16,7152	-239,3927	-2 150,6746	-2 352,1164	2 329,3342	-12,3771
2	-45,1324	3,4896	-2 285,3484	-3 162,8028	-3 681,4600	-20,4226
3	68,7928	-2,6705	1 366,0618	-1 650,4783	-1 916,6684	59,9652
4	-16,6603	-370,3682	1 460,1228	-814,4362	1 159,3730	-13,3870
149	-339,7744	-339,7747	1 619,4829	0,0000	0,0000	0,0000
150	-403,6323	-403,6327	-1 991,9250	0,0000	0,0000	0,0000
151	345,5014	-345,5026	1 657,6767	0,0000	0,0000	0,0000
152	407,6203	-407,6203	-2 020,6296	0,0000	0,0000	0,0000

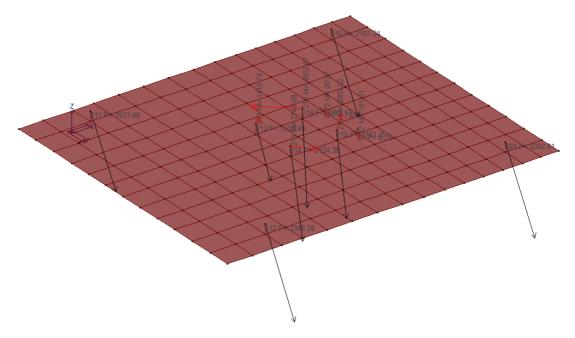

	Combinazione 5						
Nodo N°	Fx	Fy	Fz	Mx	My	Mz	
	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm	
1	-0,9927	-146,8752	-2 139,0183	-2 980,3237	2 741,6565	-13,0383	
2	-162,4594	11,5699	1 248,2921	1 148,8802	1 032,3428	-8,0302	
3	-415,1380	19,9452	-2 083,3397	2 045,7445	1 836,4552	-5,5602	
4	0,6383	108,0474	1 339,8919	-2 295,5146	1 799,4748	65,2912	
149	-376,9107	-376,9050	1 858,9557	0,0000	0,0000	0,0000	
150	-437,6745	-437,6810	-2 217,2339	0,0000	0,0000	0,0000	
151	-440,9236	440,9189	-2 265,0254	0,0000	0,0000	0,0000	
152	-380,9741	380,9798	1 912,2437	0,0000	0,0000	0,0000	

			Combinazione	6		
Nodo N°	Fx	Fy	Fz	Mx	My	Mz
	kg = daN	kg = daN	kg = daN	daN cm	daN cm	daN cm
1	-16,7152	-239,3927	-2 150,6746	-2 352,1164	2 329,3342	-12,3771
2	-45,1324	3,4896	-2 285,3484	-3 162,8028	-3 681,4600	-20,4226
3	68,7928	-2,6705	1 366,0618	-1 650,4783	-1 916,6684	59,9652
4	-16,6603	-370,3682	1 460,1228	-814,4362	1 159,3730	-13,3870
149	-339,7744	-339,7747	1 619,4829	0,0000	0,0000	0,0000
150	-403,6323	-403,6327	-1 991,9250	0,0000	0,0000	0,0000
151	345,5014	-345,5026	1 657,6767	0,0000	0,0000	0,0000
152	407,6203	-407,6203	-2 020,6296	0,0000	0,0000	0,0000

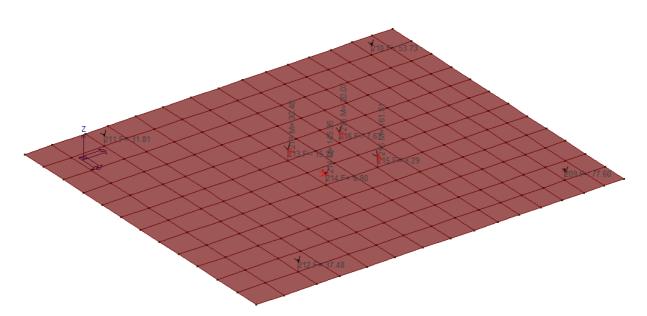
Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale
	e finale)
8	carico di pressione uniforme su elemento tipo piastra

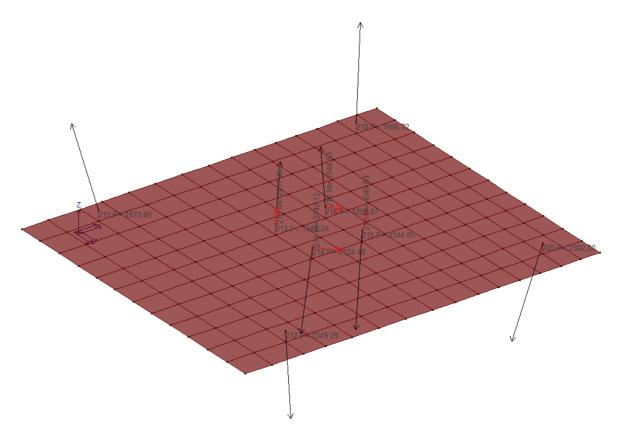
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la
	larghezza d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del
	primo, dimensioni dell' impronta, interasse tra i carichi

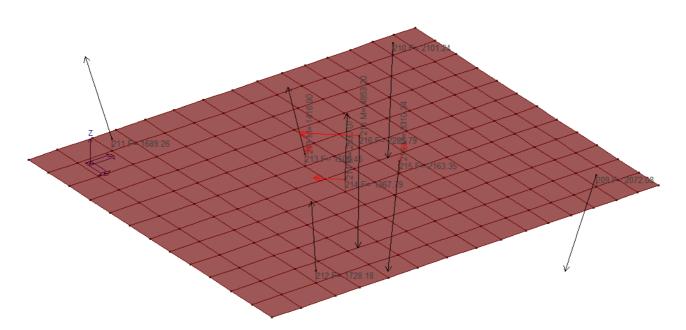


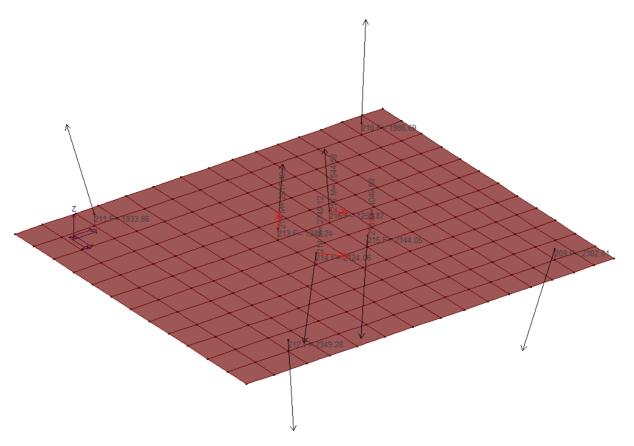
Tipo carico concentrato nodale

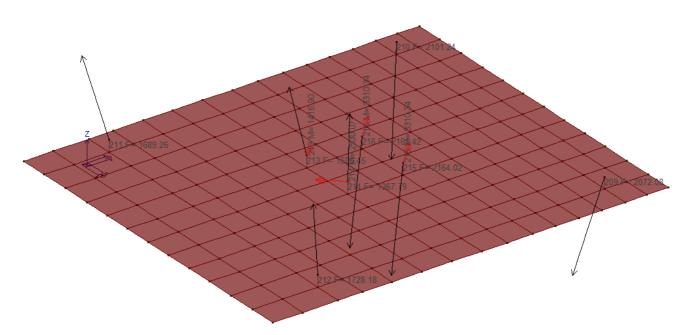

ld	Tipo	Fx	Fy	Fz	Mx	Му	Mz
		daN	daN	daN	daN cm	daN cm	daN cm
1	CN:Fx=16.71 Fy=239.39 Fz=-2150.00 Mx=-2352.12 My=2319.33 Mz=-12.38	16.71	239.39		-2352.12		-12.38
2 5	CN:Fx=162.45 Fy=11.00 Fz=-2285.34 Mx=-3162.00 My=-3681.00 Mz=-20.42	162.45	11.00	-2285.34	-3162.00	-3681.00	-20.42
	CN:Fx=376.91 Fy=376.90 Fz=-1858.95	376.91	376.90	-1858.95	0.0	0.0	0.0
	CN:Fx=437.67 Fy=437.68 Fz=-2217.23	437.67	437.68	-2217.23	0.0	0.0	0.0
7	CN:Fx=440.92 Fy=440.91 Fz=-2265.02	440.92	440.91		0.0	0.0	0.0
8 9	CN:Fx=407.62 Fy=407.62 Fz=-2020.62	407.62	407.62	-2020.62		0.0	0.0
9	CN:Fx= 3.000e-02 Fy=4.32 Fz=-7.07 Mx=-152.72 My=52.57 Mz=-0.51	0.03	4.32	-7.07	-152.72	52.57	-0.51
10	CN:Fx=2.00 Fy= 6.000e-02 Fz=-7.40 Mx=-19.96 My=2.03 Mz=0.30	2.00	0.06	-7.40	-19.96	2.03	0.30
13	CN:Fx=9.00 Fy=9.46 Fz=-29.00	9.00	9.46	-29.00	0.0	0.0	0.0
14	CN:Fx=13.55 Fy=9.46 Fz=-75.82	13.55	9.46	-75.82	0.0	0.0	0.0
15	CN:Fx=9.15 Fy=9.15 Fz=-35.18	9.15	9.15	-35.18	0.0	0.0	0.0
16	CN:Fx=9.52 Fy=9.52 Fz=-52.02	9.52	9.52	-52.02	0.0	0.0	0.0
17	CN:Fx=-0.99 Fy=-146.87 Fz=-2139.01 Mx=-2980.65 My=2741.65 Mz=-13.04	-0.99	-146.87	-2139.01	-2980.65	2741.65	-13.04
18	CN:Fx=-162.45 Fy=11.56 Fz=1248.29 Mx=1148.82 My=1032.34 Mz=-8.03	-162.45	11.56	1248.29	1148.82	1032.34	-8.03
21	CN:Fx=-376.91 Fy=-376.90 Fz=1858.96	-376.91	-376.90	1858.96	0.0	0.0	0.0
22	CN:Fx=-437.67 Fy=-437.67 Fz=-2217.23	-437.67	-437.67	-2217.23	0.0	0.0	0.0
23	CN:Fx=-440.92 Fy=440.91 Fz=-2265.03	-440.92	440.91	-2265.03	0.0	0.0	0.0
24	CN:Fx=-380.97 Fy=380.97 Fz=1912.27	-380.97	380.97	1912.27	0.0	0.0	0.0
25	CN:Fx=-16.71 Fy=-239.39 Fz=-2150.00 Mx=-2352.11 My=2329.33 Mz=-12.37	-16.71	-239.39	-2150.00	-2352.11	2329.33	-12.37
26	CN:Fx=-45.13 Fy=3.48 Fz=-2285.34 Mx=-3162.28 My=-3681.46 Mz=-20.42	-45.13	3.48	-2285.34	-3162.28	-3681.46	-20.42
29	CN:Fx=-339.77 Fy=-339.77 Fz=1619.48	-339.77	-339.77	1619.48	0.0	0.0	0.0
30	CN:Fx=-403.63 Fy=-403.63 Fz=-1991.90	-403.63	-403.63	-1991.90	0.0	0.0	0.0
31	CN:Fx=345.50 Fy=-345.50 Fz=1657.67	345.50	-345.50	1657.67	0.0	0.0	0.0
	CN:Fx=407.62 Fy=-407.62 Fz=-2020.62	407.62	-407.62	-2020.62	0.0	0.0	0.0
33	CN:Fx=-0.99 Fy=-146.87 Fz=-2139.01 Mx=-2980.32 My=2741.65 Mz=-13.04	-0.99	-146.87	-2139.01	-2980.32	2741.65	-13.04
34	CN:Fx=-162.45 Fy=11.59 Fz=1248.29 Mx=1148.88 My=1032.34 Mz=-8.03	-162.45	11.59	1248.29	1148.88	1032.34	-8.03
37	CN:Fx=-376.91 Fy=-376.90 Fz=1858.95	-376.91	-376.90	1858.95	0.0	0.0	0.0
38	CN:Fx=-437.67 Fy=-437.68 Fz=-2217.23	-437.67	-437.68	-2217.23	0.0	0.0	0.0
39	CN:Fx=-440.92 Fy=440.91 Fz=-2265.02	-440.92	440.91	-2265.02	0.0	0.0	0.0
40	CN:Fx=-380.97 Fy=380.97 Fz=1912.24	-380.97	380.97	1912.24	0.0	0.0	0.0
	CN:Fx=-16.72 Fy=-239.39 Fz=-2150.67 Mx=-2352.11 My=2329.33 Mz=-12.38	-16.72	-239.39	-2150.67	-2352.11	2329.33	-12.38
42	CN:Fx=-45.13 Fy=-239.39 Fz=-2150.67 Mx=-2352.11 My=2329.33 Mz=-12.37	-45.13	-239.39	-2150.67	-2352.11	2329.33	-12.37
45	CN:Fx=-339.77 Fy=-339.77 Fz=1619.48	-339.77	-339.77	1619.48	0.0	0.0	0.0
46	CN:Fx=-403.63 Fy=-403.63 Fz=-1991.90	-403.63	-403.63	-1991.90	0.0	0.0	0.0
47	CN:Fx=345.50 Fy=-345.50 Fz=1657.67	345.50	-345.50	1657.67	0.0	0.0	0.0
	CN:Fx=407.62 Fy=-407.62 Fz=-2020.62	407.62	-407.62	-2020.62	0.0	0.0	0.0

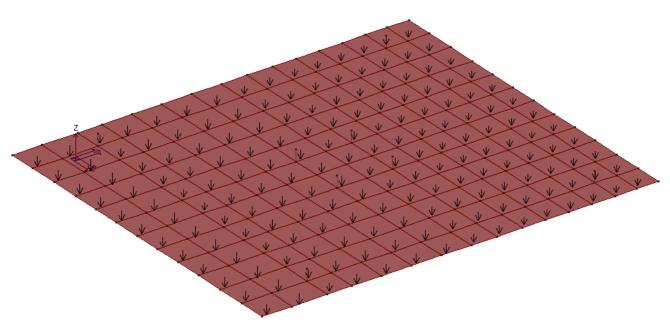
Tipo carico variabile generale

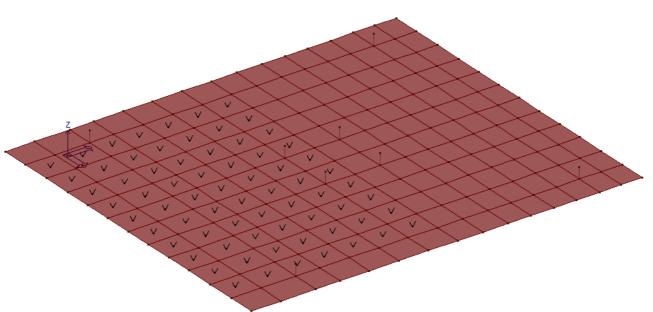

ld	Тіро	ascissa	valore	ascissa	valore
		cm	daN/cm2	cm	daN/cm2
49	Carico terreno 700 DaN/mq				
	X - X Qz Area L2=0.0	-1.000e+05	-0.07	1.000e+05	-0.07
50	Carico permaente conteiner 100 DaN/mq				
	X - X Qz Area L2=0.0	-1.000e+05	-0.01	1.000e+05	-0.01
51	Carico variabile conteiner 200 DaN/mq				
	X - X Qz Area L2=0.0	-1.000e+05	-0.02	1.000e+05	-0.02

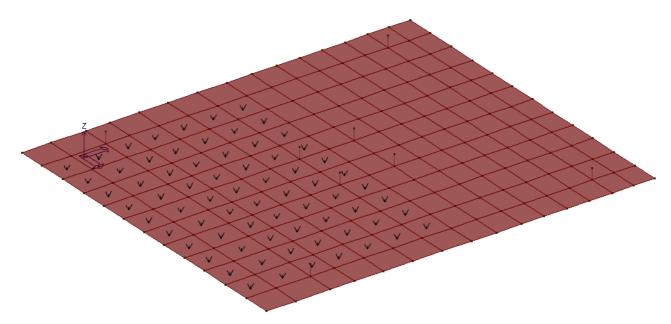

Combinazione 1


Combinazione 2


Combinazione 3


Combinazione 4


Combinazione 5


Combinazione 6

Carico permanente terreno sp.40cm su platea

Carico permanente conteiner

Carico variabile conteiner

2.1.7. PRINCIPALI COMBINAZIONI INDAGATE

Combinazioni dei casi di carico	
APPROCCIO PROGETTUALE	Approccio 2
Tensioni ammissibili	NO
SLU	SI
SLV (SLU con sisma)	NO
SLC	NO
SLD	NO
SLO	NO
SLU GEO A2 (per approccio 1)	NO
SLU EQU	NO
Combinazione caratteristica (rara)	NO
Combinazione frequente	NO
Combinazione quasi permanente (SLE)	NO
SLA (accidentale quale incendio)	NO

Il programma consente l'applicazione di diverse tipologie di casi di carico. Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti

3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in
			condizione sismica
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico: 7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso:

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

CDC	Tipo	Sigla Id	Note
	Gk	CDC=G1k (permanente generico) Combinazione 1	Nodo: 67 Azione: CN:Fx= 3.000e-02 Fy=4.32 Fz=-7.07 Mx=-
		,	152.72 My=52.57 Mz=-0.51
			Nodo: 72 Azione: CN:Fx=2.00 Fy= 6.000e-02 Fz=-7.40 Mx=-
			19.96 My=2.03 Mz=0.30
			Nodo: 209 Azione: CN:Fx=437.67 Fy=437.68 Fz=-2217.23
			Nodo: 210 Azione: CN:Fx=407.62 Fy=407.62 Fz=-2020.62
			Nodo: 211 Azione: CN:Fx=376.91 Fy=376.90 Fz=-1858.95
			Nodo: 212 Azione: CN:Fx=440.92 Fy=440.91 Fz=-2265.02
			Nodo: 213 Azione: CN:Fx=16.66 Fy=370.36 Fz=-1460.12 Mx=
			814.15 My=1159.37 Mz=-13.38
			Nodo: 214 Azione: CN:Fx=415.13 Fy=19.94 Fz=-2083.33
			Mx=2045.70 My=1836.45 Mz=-5.56
			Nodo: 215 Azione: CN:Fx=16.71 Fy=239.39 Fz=-2150.00 Mx=
			2352.12 My=2319.33 Mz=-12.38
			Nodo: 216 Azione: CN:Fx=162.45 Fy=11.00 Fz=-2285.34 Mx=
			3162.00 My=-3681.00 Mz=-20.42
2	Gk	CDC=G1k (permanente generico) Combinazione 2	Nodo: 209 Azione: CN:Fx=13.55 Fy=9.46 Fz=-75.82
			Nodo: 210 Azione: CN:Fx=9.52 Fy=9.52 Fz=-52.02
			Nodo: 211 Azione: CN:Fx=9.00 Fy=9.46 Fz=-29.00
			Nodo: 212 Azione: CN:Fx=9.15 Fy=9.15 Fz=-35.18
			Nodo: 213 Azione: CN:Fx=0.57 Fy=3.36 Fz=-14.88 Mx=-30.00
			My=5.32 Mz=1.00
			Nodo: 214 Azione: CN:Fx=1.30 Fz=-6.67 Mx=73.19 My=125.5
			Mz=-1.96
			Nodo: 215 Azione: CN:Fx= 3.000e-02 Fy=4.32 Fz=-7.07 Mx=-
			152.72 My=52.57 Mz=-0.51

CDC	Tipo	Sigla Id	Note
	•		Nodo: 216 Azione: CN:Fx=2.00 Fy= 6.000e-02 Fz=-7.40 Mx=-
			19.96 My=2.03 Mz=0.30
3	Gk	CDC=G1k (permanente generico) Combinazione 3	Nodo: 209 Azione: CN:Fx=-437.67 Fy=-437.67 Fz=-2217.23
			Nodo: 210 Azione: CN:Fx=-380.97 Fy=380.97 Fz=1912.27
			Nodo: 211 Azione: CN:Fx=-376.91 Fy=-376.90 Fz=1858.96
			Nodo: 212 Azione: CN:Fx=-440.92 Fy=440.91 Fz=-2265.03
			Nodo: 213 Azione: CN:Fx=0.63 Fy=108.04 Fz=1339.89 Mx=-
			2295.51 My=1799.47 Mz=65.29
			Nodo: 214 Azione: CN:Fx=-415.20 Fy=19.94 Fz=-2083.34
			Mx=2045.74 My=1836.45 Mz=-5.56
			Nodo: 215 Azione: CN:Fx=-0.99 Fy=-146.87 Fz=-2139.01 Mx=-
			2980.65 My=2741.65 Mz=-13.04
			Nodo: 216 Azione: CN:Fx=-162.45 Fy=11.56 Fz=1248.29
			Mx=1148.82 My=1032.34 Mz=-8.03
4	Gk	CDC=G1k (permanente generico) Combinazione 4	Nodo: 209 Azione: CN:Fx=-403.63 Fy=-403.63 Fz=-1991.90
			Nodo: 210 Azione: CN:Fx=407.62 Fy=-407.62 Fz=-2020.62
			Nodo: 211 Azione: CN:Fx=-339.77 Fy=-339.77 Fz=1619.48
			Nodo: 212 Azione: CN:Fx=345.50 Fy=-345.50 Fz=1657.67
			Nodo: 213 Azione: CN:Fx=-16.66 Fy=-370.36 Fz=1460.12
			Mx=-814.43 My=1159.37 Mz=-13.38
			Nodo: 214 Azione: CN:Fx=68.79 Fy=-2.67 Fz=1366.06 Mx=-
			1650.47 My=-1916.66 Mz=59.97
			Nodo: 215 Azione : CN:Fx=-16.71 Fy=-239.39 Fz=-2150.00
			Mx=-2352.11 My=2329.33 Mz=-12.37
			Nodo: 216 Azione : CN:Fx=-45.13 Fy=3.48 Fz=-2285.34 Mx=-
			3162.28 My=-3681.46 Mz=-20.42
5	Gk	CDC=G1k (permanente generico) Combinazione 5	Nodo: 209 Azione: CN:Fx=-437.67 Fy=-437.68 Fz=-2217.23
			Nodo: 210 Azione: CN:Fx=-380.97 Fy=380.97 Fz=1912.24
			Nodo: 211 Azione: CN:Fx=-376.91 Fy=-376.90 Fz=1858.95
			Nodo: 212 Azione: CN:Fx=-440.92 Fy=440.91 Fz=-2265.02
			Nodo: 213 Azione: CN:Fx=0.64 Fy=108.04 Fz=1339.89 Mx=-
			2295.51 My=1799.47 Mz=65.29
			Nodo: 214 Azione: CN:Fx=-415.13 Fy=19.94 Fz=-2083.00
			Mx=2045.75 My=1836.45 Mz=-5.56
			Nodo: 215 Azione: CN:Fx=-0.99 Fy=-146.87 Fz=-2139.01 Mx=-
			2980.32 My=2741.65 Mz=-13.04
			Nodo: 216 Azione: CN:Fx=-162.45 Fy=11.59 Fz=1248.29
			Mx=1148.88 My=1032.34 Mz=-8.03
3	Gk	CDC=G1k (permanente generico) Combinazione 6	Nodo: 209 Azione : CN:Fx=-403.63 Fy=-403.63 Fz=-1991.90
		,	Nodo: 210 Azione : CN:Fx=407.62 Fy=-407.62 Fz=-2020.62
			Nodo: 211 Azione : CN:Fx=-339.77 Fy=-339.77 Fz=1619.48
			Nodo: 212 Azione : CN:Fx=345.50 Fy=-345.50 Fz=1657.67
			Nodo: 213 Azione : CN:Fx=-16.66 Fy=-370.36 Fz=1460.12
			Mx=-814.43 My=1159.37 Mz=-13.38
			Nodo: 214 Azione : CN:Fx=68.79 Fy=-2.67 Fz=1366.06 Mx=-
			1650.47 My=-1916.66 Mz=59.96
			Nodo: 215 Azione : CN:Fx=-16.72 Fy=-239.39 Fz=-2150.67
			Mx=-2352.11 My=2329.33 Mz=-12.38
			Nodo: 216 Azione : CN:Fx=-45.13 Fy=-239.39 Fz=-2150.67
			Mx=-2352.11 My=2329.33 Mz=-12.37
7	Gk	CDC=G1k (permanente generico) Carico permanente terreno	D3 :da 1 a 180 Azione : Carico terreno 700 DaN/mq
•	GIV.	sp.40cm su platea	20 .dd 1 d 100 / Ziono . Odnoo terreno 700 Darwing
3	Gk	CDC=G1k (permanente generico) Caso di carico non definito	D3: 1 Azione: Carico permaente conteiner 100 DaN/mq
	JI.	OSS - STR (pormanonto gononos) Osso di canco non dell'illo	D3 : da 4 a 8 Azione : Carico permaente conteiner 100
			DaN/mg
			D3 :da 11 a 15 Azione : Carico permaente conteiner 100
			DaN/mg
			D3 :da 18 a 25 Azione : Carico permaente conteiner 100
			DaN/mg
			D3 :da 28 a 32 Azione : Carico permaente conteiner 100
			DaN/mq D3 :da 35 a 39 Azione : Carico permaente conteiner 100
			DaN/mg
			·
			D3 :da 42 a 68 Azione : Carico permaente conteiner 100
			DaN/mq

CDC	Tipo	Sigla Id	Note		
			D3 :da 117 a 130 Azione : Carico permaente conteiner 100		
			DaN/mq		
9	Qk	CDC=Qk (variabile generico) carico variabile conteiner	D3: 1 Azione: Carico variabile conteiner 200 DaN/mq		
			D3 :da 4 a 8 Azione : Carico variabile conteiner 200 DaN/mq		
			D3 :da 11 a 15 Azione : Carico variabile conteiner 200		
			DaN/mq		
			D3 :da 18 a 25 Azione : Carico variabile conteiner 200		
			DaN/mq		
			D3 :da 28 a 32 Azione : Carico variabile conteiner 200		
			DaN/mq		
			D3 :da 35 a 39 Azione : Carico variabile conteiner 200		
			DaN/mq		
			D3 :da 42 a 68 Azione : Carico variabile conteiner 200		
			DaN/mq		
			D3 :da 117 a 130 Azione : Carico variabile conteiner 200		
			DaN/mq		

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$$

Combinazione caratteristica (rara) SLE

$$G1 + G2 + P + Qk1 + \psi 02 \cdot Qk2 + \psi 03 \cdot Qk3 + ...$$

Combinazione frequente SLE

$$G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$$

Combinazione quasi permanente SLE

$$G1 + G2 + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

$$E + G1 + G2 + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60

Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti	Favorevoli	γG2	0,8	0,8	0,8
non strutturali	Sfavorevoli		1,5	1,5	1,3
(Non compiutamente definiti)					
Carichi variabili	Favorevoli	γQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Combinazione 1 da definire	
2	SLU	Combinazione 2 da definire	
3	SLU	Combinazione 3 da definire	
4	SLU	Combinazione 4 da definire	
5	SLU	Combinazione 5 da definire	
6	SLU	Combinazione 6 da definire	

Cmb	CDC	CDC	CDC	CDC	CDC									
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.00	0.0	0.0	0.0	0.0	0.0	1.30	1.30	1.50					
2	0.0	1.00	0.0	0.0	0.0	0.0	1.30	1.30	1.50					
3	0.0	0.0	1.00	0.0	0.0	0.0	1.30	1.30	1.50					
4	0.0	0.0	0.0	1.00	0.0	0.0	1.30	1.30	1.50					
5	0.0	0.0	0.0	0.0	1.00	0.0	1.30	1.30	1.50					
6	0.0	0.0	0.0	0.0	0.0	1.00	1.30	1.30	1.50					

2.1.8. METODO DI ANALISI ESEGUITO

Tipo di analisi strutturale	
Carichi verticali	SI
Statica non lineare	NO
Sismica statica lineare	NO
Sismica dinamica lineare	NO
Sismica statica non lineare (prop. masse)	NO
Sismica statica non lineare (prop. modo)	NO

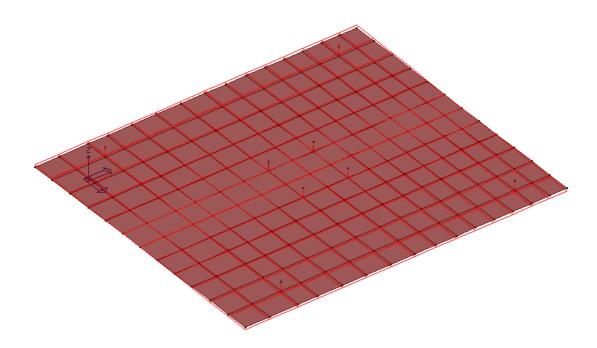
Sismica statica non lineare (triangolare)	NO
Non linearità geometriche (fattore P delta)	NO

2.1.9. SINTESI DEI PRINCIPALI RISULTATI

2.1.9.1. RISULTATI DELL'ANALISI SISMICA

Si rimanda alla relazione della sovrastruttura.

2.1.9.2. PRINCIPALI CONFIGURAZIONI DEFORMATE

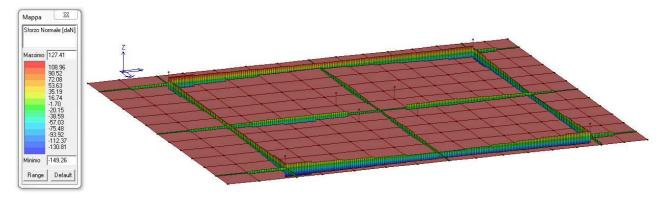

Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

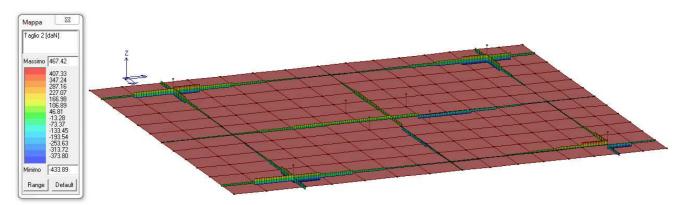
Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

	Rotazione Z	Rotazione Y	Rotazione X	Traslazione Z	Traslazione Y	Traslazione X	Nodo
-2.96e-05	-3.98e-05	-6.70e-05	-0.19	-5.77e-03	-5.39e-03		
1.76e-05	1.87e-04	8.19e-05	-0.09	5.65e-03	6.17e-03		

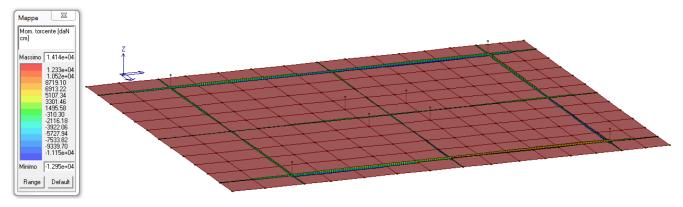


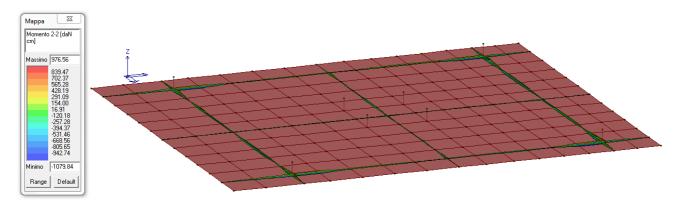
Deformata e indeformata

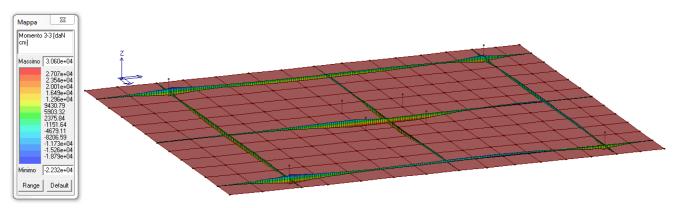

2.1.9.3. INVILUPPO DELLE SOLLECITAZIONI MAGGIORMENTE SIGNIFICATIVE

ELEMENTI TIPO TRAVE

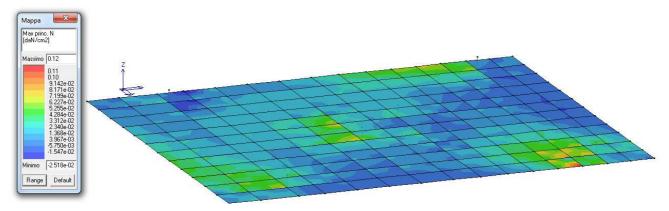
Trave	M3 mx/mn N	//2 mx/mn	D 2 / D 3	Q 2 / Q 3	N	V 2	V 3	Т
	-2.232e+04	-1079.84	-0.01	0.0	-149.26	-433.89	-24.46 -1.2	95e+04
	3.060e+04	976.56	4.19e-03	0.0	127.41	467.42	21.54 1.4	14e+04

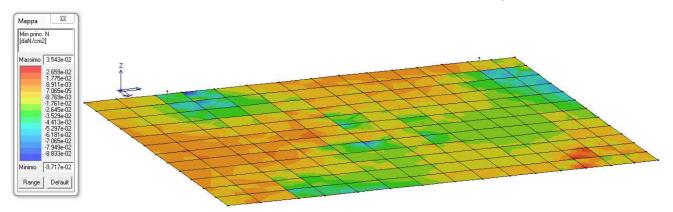

TRAVI - Inviluppo sforzo normale


TRAVI - Inviluppo Taglio 2

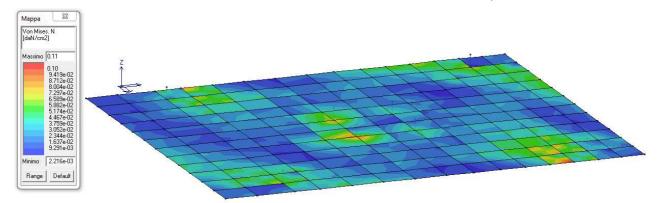

TRAVI - Inviluppo Taglio 3

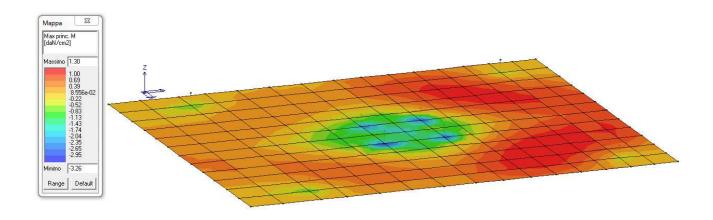
TRAVI - Inviluppo Momento Torcente

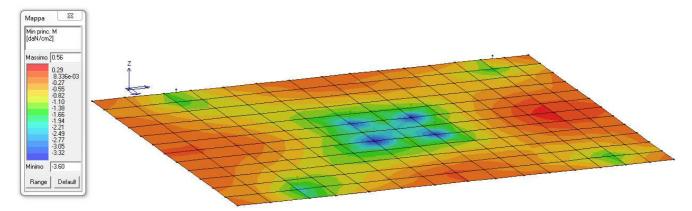

TRAVI - Inviluppo Momento 2-2

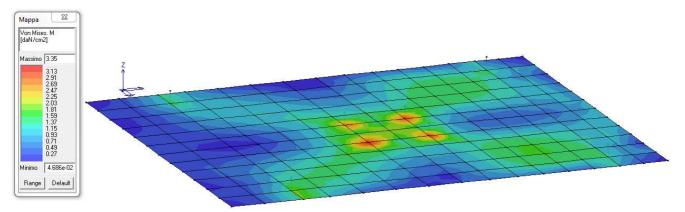

TRAVI - Inviluppo Momento 3-3

ELEMENTI TIPO SHELL


M_G	N max	N min	N 1	N 2	N 1-2	M max	M min	M 1	M 2	M 1-2	
			-2.85	-2.40	-2.63	-1.01		-860.55	-745.02	-827.94	-240.95
		3 11		1.87	2 84	1 28	378 24		268 55	378 04	246 53

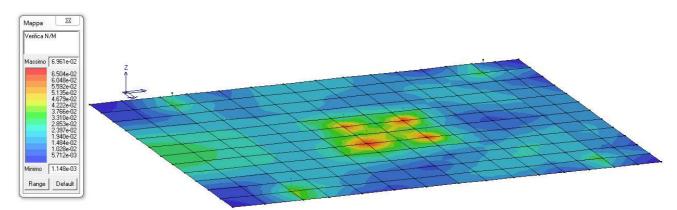

ELEMENTI SHELL D3 -Combinazione 1-Tensione Max Principale N


ELEMENTI SHELL D3 -Combinazione 1-Tensione Min Principale N

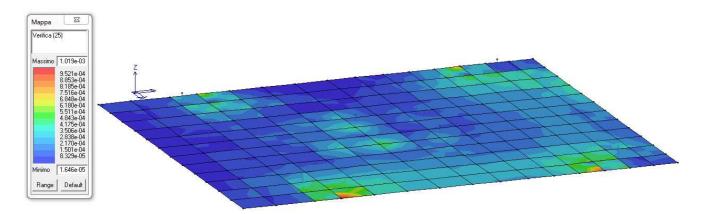

ELEMENTI SHELL D3 -Combinazione 1-Tensione Von Mises N

ELEMENTI SHELL D3 -Tensione Max Principale M

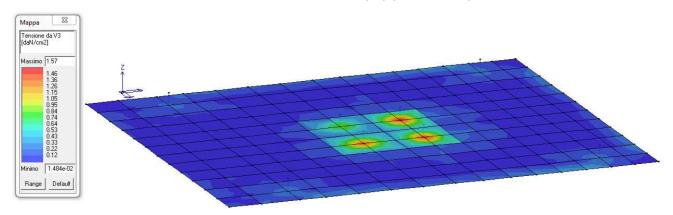
ELEMENTI SHELL D3 -Combinazione 1-Tensione Min Principale M


ELEMENTI SHELL D3 -Combinazione 1-Tensione Von Mises M

2.1.10. SINTESI DELLE VERIFICHE DI SICUREZZA

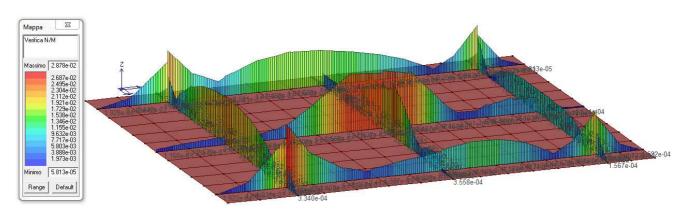

2.1.10.1. VERIFICHE SLU

VERIFICHE ELEMENTI SHELL D3

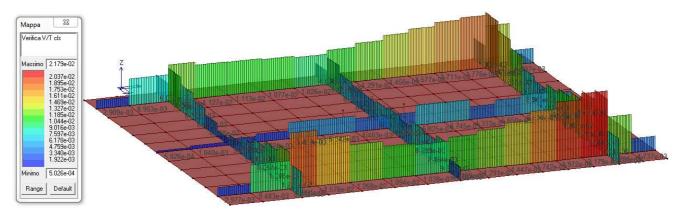

Nodo	x/d	V N/M	ver. rid Af pr- Af pr+Af sec-Af sec+	Νx	Nу	N xy	Мх	Мy	Мху
				-2.58	-2.18	-1.53	-909.83	-904.54	-241.67
	0.10	0.07	1.02e-03 10.05 10.05 10.05 10.05	1 73	2 22	1 22	270 42	248 85	248 55

Elementi Shell D3 - verifica N/M (<1 verificato)

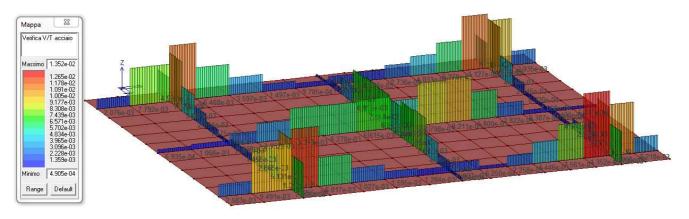
Elementi Shell D3 - verifica (25) (<1 verificato)



Elementi Shell D3 - verifica Tensione da V


VERIFICHE ELEMENTI TRAVI

 Trave
 %Af
 Af inf. one
 Af. sup Af long. one
 x/d one
 V N/M one
 V V/T cls one
 V V/T acc one


 0.33
 8.04
 8.04
 0.0
 0.13
 0.03
 0.02
 0.01

Stato di progetto: verifica N/M

Stato di progetto: verifica V/T cls

Stato di progetto: verifica V/T acciaio

2.1.10.3. GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI

Il programma utilizzato per l'analisi statica prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l'elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

2.1.11. CARATTERISTICHE E AFFIDABILITA' DEL CODICE DI CALCOLO

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Informazioni sul codice di calcolo							
Titolo:	PRO_SAP PROfessional Structural Analysis Program						
Versione:	PROFESSIONAL (build 2018-11-184)						
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara						
Dati utente finale:	******* COMPLETARE ******						
Codice Utente:	******* COMPLETARE ******						
Codice Licenza:	Licenza dsi3984						

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: http://www.2si.it/Software/Affidabilità.htm

2.1.12. VERIFICHE SULLE FONDAZIONI

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La prima tabella è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera.

In particolare viene riportato:

Nodo	numero del nodo a cui è applicato il plinto					
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:					
	3) palo singolo (<i>PALO</i>)					
	4) plinto su palo					
	5) plinto su due pali (<i>PL.2P</i>)					
	6) plinto su tre pali (<i>PL.3P</i>)					
	7) plinto su quattro pali (<i>PL.4P</i>)					
	8) plinto rettangolare su cinque pali (<i>PL.5P.R</i>)					
	9) plinto pentagonale su cinque pali (<i>PL.5P</i>)					
	10) plinto su sei pali (<i>PL.6P</i>)					
Palo	numero del palo					
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.					
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di					
	sollecitazione.					

L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

La seconda tabella è riferita alle fondazioni tipo plinto su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare viene riportato:

Nodo		numero del nodo a cui è applicato il plinto
Tipo		Codice identificativo del nome assegnato al plinto
area		area dell'impronta del plinto
Wink O	Wink V	coefficienti di Winkler (orizzontale e verticale) adottati
Comb		Combinazione di carico in cui si verificano i valori riportati
Pt (P1 P2	P3 P4)	valori di pressione nei vertici

La terza tabella è riferita alle fondazioni tipo platea su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

La <u>quarta tabella</u> è riferita alle fondazioni tipo trave su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

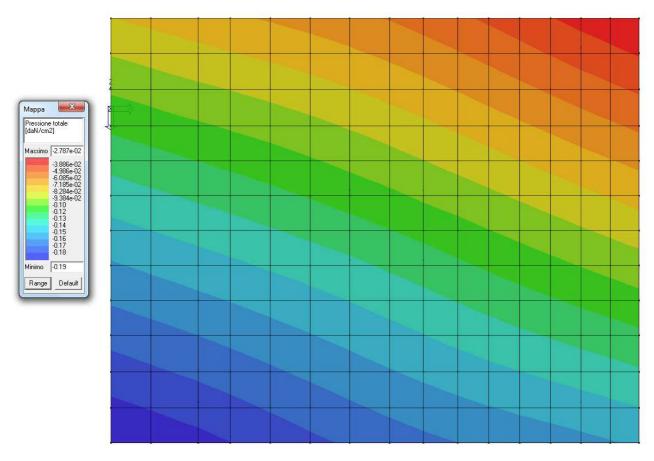
tabella.						
Nodo (G)	Pt 1/12 daN/cm2	Pt 2/13 daN/cm2	Pt 3 daN/cm2	Pt 4 daN/cm2	daN/cm2	daN/cm2
1	-0.13					
2	-0.14					
3	-0.16					
4	-0.15					
5	-0.14					
6						
7	-0.14					
,	-0.13					
8 9	-0.15					
	-0.17					
10	-0.14					
11	-0.14					
12	-0.14					
13	-0.15					
14	-0.13					
15	-0.15					
16	-0.15					
17	-0.15					
18	-0.15					
19	-0.15					
20	-0.15					
21	-0.15					
22	-0.14					
23	-0.14					
24	-0.14					
25	-0.14					
26	-0.14					
27	-0.14					
28	-0.14					
29	-0.15					
30	-0.15					
31	-0.15					
32	-0.15					
33	-0.15					
34	-0.14					
35	-0.14					
36	-0.14					
37	-0.15					
38	-0.15					
39	-0.15					
40	-0.15					
41	-0.14					
42	-0.14					
43	-0.14					
44	-0.14					
45	-0.14					
46	-0.15					
47	-0.15					
48	-0.15					
49	-0.15					
	_					

127 128 129 130 131 132 133 134 135 136 137 138 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 161 162 163 164 165 167 171 172 173 174 175 176 177 178 179 179 179 179 179 179 179 179 179 179	-0.13 -0.13 -0.13 -0.13 -0.13 -0.14 -0.14 -0.15 -0.14 -0.15 -0.14 -0.15 -0.14 -0.15 -0.16 -0.16 -0.16 -0.16 -0.17 -0.16 -0.17 -0.18 -0.17 -0.18 -0.17 -0.18 -0.19 -0
192	-0.14
193	-0.13
194	-0.14
195	-0.13

```
204 -0.13

205 -0.13

206 -0.14


207 -0.13

208 -0.14

Nodo (G) Pt 1/12 Pt 2/13 Pt 3... Pt 4...

-0.19

-0.13
```


Pressione massima sulla platea (Cobinazione 3)

2.1.13. ES CATEGORIA DI INTEVENTO PREVISTA

X	- INTERVENTI DI NUOVA COSTRUZIONE	I valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
	- INTERVENTI DI ADEGUAMENTO SISMICO	Nei casi per i quali l'intervento previsto è configurabile come adeguamento sismico, i valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
	-INTERVENTO DI MIGLIORAMENTO SISMICO -INTERVENTO LOCALE O RIPARAZIONE -INTERVENTO SU BENI DI INTERESSE CULTURALE, IN ZONE A RISCHO SISMICO (COMMA 4, ART. 29,, d.Lgs. 22/01/2004, n° 42)	L'intervento previsto non è configurabile come adeguamento sismico, i valori di calcolo considerati sono quelli definiti dal D. M. Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni.
	-INTERVENTO DI MIGLIORAMENTO SISMICO -INTERVENTO LOCALE O RIPARAZIONE -INTERVENTO SU BENI DI INTERESSE	L'intervento previsto non è configurabile come adeguamento sismico, i valori di calcolo considerati sono quelli definiti dal D. M.

CULTURALE, IN ZONE A RISCHO SISMICO (COMMA 4, ART. 29,, d.Lgs. 22/01/2004, n° 42)	Infrastrutture Trasporti 17 Gennaio 2018, per quanto concerne le nuove costruzioni; tuttavia per quanto concerne i carichi permanenti, in relazione all'accurato rilievo geometrico - strutturale e dei materiali sviluppato, si adotta coefficiente parziale
	modificato γ_G a seguito descritto e giustificato.

2.2. TABULATI DI CALCOLO

2.2.1. PRINCIPALI RISULTATI

RISULTATI NODALI

Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

Nodo	Cmb	Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
		cm	cm	cm			
1	1	5.41e-03	5.51e-03	-0.14	6.55e-05	2.73e-05	0.0
1	6	-7.82e-05	-5.64e-03	-0.12	-4.96e-05	5.13e-06	0.0
2	1	5.41e-03	5.34e-03	-0.15	6.74e-05	4.28e-06	0.0
2	6	-9.24e-05	-5.41e-03	-0.12	-4.93e-05	-6.30e-06	0.0
3	1	5.16e-03	5.34e-03	-0.17	2.92e-05	2.65e-05	0.0
3	3	-5.00e-03	9.52e-05	-0.17	6.37e-05	1.70e-04	0.0
3	6	2.77e-04	-5.40e-03	-0.10	-3.47e-05	-3.31e-05	0.0
4	1	5.13e-03	5.51e-03	-0.16	2.82e-05	1.24e-05	0.0
4	6	2.66e-04	-5.63e-03	-0.10	-3.43e-05	3.12e-05	0.0
5	1	5.36e-03	5.42e-03	-0.15	5.92e-05	1.67e-05	0.0
5	6	-1.58e-05	-5.53e-03	-0.12	-5.10e-05	0.0	0.0
6	1	5.53e-03	5.29e-03	-0.14	5.23e-05	3.16e-05	0.0
6	3	-5.36e-03	9.40e-05	-0.14	5.83e-05	1.83e-04	0.0
6	6	-2.40e-04	-5.34e-03	-0.13	-5.68e-05	1.32e-05	0.0
7	1	5.54e-03	5.61e-03	-0.13	5.25e-05	3.61e-06	0.0
7	4	-7.64e-05	-5.06e-03	-0.13	-5.73e-05	-1.50e-05	0.0
7	6	-1.83e-04	-5.73e-03	-0.13	-5.73e-05	-1.46e-05	0.0
8	1	5.22e-03	5.59e-03	-0.16	3.73e-05	1.79e-05	0.0
8	6	1.58e-04	-5.73e-03	-0.10	-4.48e-05	3.48e-05	0.0
9	1	5.23e-03	5.30e-03	-0.17	4.08e-05	2.26e-05	0.0
9	3	-5.09e-03	1.71e-04	-0.18	6.99e-05	1.64e-04	0.0
9	6	2.05e-04	-5.33e-03	-0.10	-4.54e-05	-3.65e-05	0.0
10	1	5.36e-03	5.52e-03	-0.15	5.69e-05	3.52e-05	0.0
10	6	-1.58e-05	-5.64e-03	-0.12	-5.22e-05	1.17e-05	0.0
11	1	5.36e-03	5.34e-03	-0.15	5.99e-05	-3.07e-06	0.0

Nodo		Traslazione X -5.39e-03 6.17e-03	Traslazione Y -5.77e-03 5.65e-03	Traslazione Z -0.19 -0.09	Rotazione X -6.70e-05 8.19e-05	Rotazione Y -3.98e-05 1.87e-04	Rotazione Z -2.96e-05 1.76e-05
216	6	4.43e-05 Traslazione X	-4.66e-03 Traslazione Y	-0.12 Traslazione Z	-4.59e-05 Rotazione X	4.76e-06 Rotazione Y	0.0 Rotazione Z
22 	1	5.26e-03	5.52e-03	-0.15	3.86e-05	2.46e-05	0.0
21	6	1.40e-04	-5.59e-03	-0.11	-3.98e-05	1.77e-05	0.0
21	1	5.23e-03	5.48e-03	-0.16	3.07e-05	1.96e-05	0.0
20	6	1.35e-04	-5.63e-03	-0.11	-4.29e-05	2.55e-05	0.0
20	1	5.24e-03	5.51e-03	-0.16	3.49e-05	1.91e-05	0.0
19	6	1.73e-04	-5.59e-03	-0.11	-3.81e-05	1.98e-05	0.0
19	1	5.21e-03	5.48e-03	-0.16	2.93e-05	1.67e-05	0.0
18	6	1.69e-04	-5.63e-03	-0.10	-4.02e-05	2.83e-05	0.0
18	1	5.21e-03	5.51e-03	-0.16	3.20e-05	1.56e-05	0.0
17	6	2.67e-04	-5.59e-03	-0.10	-3.26e-05	2.22e-05	0.0
17	1	5.13e-03	5.48e-03	-0.16	2.67e-05	1.37e-05	0.0
16	6	2.24e-04	-5.59e-03	-0.10	-3.50e-05	2.15e-05	0.0
16	1	5.17e-03	5.48e-03	-0.16	2.74e-05	1.45e-05	0.0
15	6	2.21e-04	-5.63e-03	-0.10	-3.64e-05	3.04e-05	0.0
15	1	5.17e-03	5.51e-03	-0.12 -0.16	2.89e-05	1.32e-05	0.0
14	6	-8.65e-05	-5.53e-03	-0.14 -0.12	-3.97e-05	0.0	0.0
14	0	5.41e-03	-5.51e-03 5.42e-03	-0.10 -0.14	-3.26e-05 7.95e-05	1.56e-05	0.0
13	6	5.14e-03 2.71e-04	5.41e-03 -5.51e-03	-0.16 -0.10	2.56e-05 -3.26e-05	0.0	0.0 0.0
13	1	5.14e-03	-5.30e-03 5.41e-03	-0.14 -0.16	-5.46e-05 2.56e-05	1.86e-05	
12	3 6	-2.93e-04	-5.30e-03	-0.15 -0.14	-5.46e-05	1.50e-04	0.0
12	1	-5.39e-03	1.14e-04	-0.14 -0.15	6.05e-05	1.85e-05	0.0
12	6	-1.52e-05 5.57e-03	-5.41e-03 5.26e-03	-0.12 -0.14	-5.24e-05 5.53e-05	-1.29e-05 3.33e-05	0.0 0.0

RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La prima tabella è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera.

In particolare viene riportato:

Nodo	numero del nodo a cui è applicato il plinto				
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:				
	3) palo singolo (<i>PALO</i>)				
	4) plinto su palo				
	5) plinto su due pali (<i>PL.2P</i>)				
	6) plinto su tre pali (<i>PL.3P</i>)				
	7) plinto su quattro pali (<i>PL.4P</i>)				
	8) plinto rettangolare su cinque pali (PL.5P.R)				
	9) plinto pentagonale su cinque pali (PL.5P)				
	10) plinto su sei pali (<i>PL.6P</i>)				

Palo	numero del palo							
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.							
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di sollecitazione.							

L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

La <u>seconda tabella</u> è riferita alle fondazioni tipo plinto su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare viene riportato:

Nodo		numero del nodo a cui è applicato il plinto		
Tipo		Codice identificativo del nome assegnato al plinto		
area		area dell'impronta del plinto		
Wink O Wink V		coefficienti di Winkler (orizzontale e verticale) adottati		
Comb		Combinazione di carico in cui si verificano i valori riportati		
Pt (P1 P2 P3 P4)		valori di pressione nei vertici		

La terza tabella è riferita alle fondazioni tipo platea su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

La <u>quarta tabella</u> è riferita alle fondazioni tipo trave su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

Nodo (G)	Pt 1/12 daN/cm2	Pt 2/13 daN/cm2	Pt 3 daN/cm2	Pt 4 daN/cm2	daN/cm2	daN/cm2
1	-0.14					
2	-0.15					
3	-0.17					
	-0.16					
4 5 6 7	-0.15					
6	-0.14					
	-0.13					
8	-0.16					
9	-0.18					
10	-0.15					
11	-0.15					
12	-0.15					
13	-0.16					
14	-0.14					
15	-0.16					
16	-0.16					
17	-0.16					
18	-0.16					
19	-0.16					
20	-0.16					
21	-0.16					
22	-0.15					
23	-0.16					
24	-0.15					

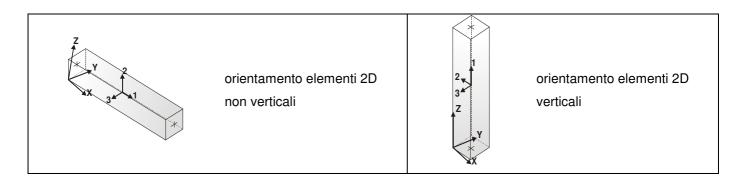
```
25
26
                -0.15
                -0.15
     27
28
                -0.15
                -0.15
     29
30
                -0.16
                -0.16
     31
32
                -0.16
                -0.16
      33
                -0.16
     34
35
                -0.15
                -0.15
     36
37
38
39
                -0.15
                -0.16
                -0.16
                -0.16
      40
                -0.16
      41
                -0.16
      42
                -0.15
      43
                -0.15
      44
                -0.15
      45
                -0.16
      46
                -0.16
      47
                -0.16
      48
                -0.16
    208
                -0.13
                           Pt 2/13
Nodo (G)
              Pt 1/12
                                          Pt 3...
                                                       Pt 4...
                -0.19
                -0.13
```

LEGENDA RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione


Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

Per gli elementi tipo *pilastro* sono riportati in tabella i seguenti valori:

Pilas.	numero dell'elemento pilastro
Cmb	combinazione in cui si verificano i valori riportati
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)
Pos.	ascissa del punto iniziale e finale dell'elemento
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento

Per gli elementi tipo *trave in elevazione* sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

Per gli elementi tipo *trave in fondazione* (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

Trave	Cmb	M3 mx/mn	n M	12 mx/mn	D 2 /	D3 Q2/	Q 3 Pos.	N	V 2	V 3 T	М 2	М 3
		daN cm	daN cm	cm	daN	cm	daN	daN	daN	daN cm	daN cm	daN cm
1	1	1.491e+04	395.33	2.82e-03	0.0	0.0	-79.36	-192.99	10.89 -	1.097e+04	-179.33	1.491e+04
		5927.85	-179.33	2.03e-05	0.0	52.8	-79.36	-192.99	10.89 -	1.097e+04	395.33	5927.85
1	3	9487.79	924.39	4.18e-03	0.0	0.0	-130.78	-208.01	-17.95	-5476.06	924.39	9487.79
		-502.00	-23.11	-2.22e-05	0.0	52.8	-130.78	-208.01	-17.95	-5476.06	-23.11	-502.00
1	4	-4951.16	-65.24	-2.93e-03	0.0	0.0	56.09	134.87	14.00	7952.32		1.131e+04
	-	1.131e+04	-804.19	-2.76e-05	0.0	52.8	56.09	134.87	14.00	7952.32	-65.24	-4951.16
1	5	9487.20	924.40	4.18e-03	0.0	0.0	-130.78	-208.02	-17.95	-5475.81	924.40	9487.20
		-502.82	-23.11	-2.22e-05	0.0	52.8	-130.78	-208.02	-17.95	-5475.81	-23.11	-502.82
1	6	-5059.73	-68.75	-2.89e-03	0.0	0.0	55.12	134.83	13.61	8076.63		1.141e+04
_		1.141e+04		-4.82e-05	0.0	52.8	55.12	134.83	13.61	8076.63	-68.75	-5059.73
2	1	-3680.16	417.11	-1.64e-03	0.0	0.0	51.63	137.73		1.178e+04	-238.09	-9660.85
•	•	-9660.85	-238.09	2.05e-05	0.0	52.0	51.63	137.73		1.178e+04	417.11	-3680.16
2	3	3329.07		-9.80e-03	0.0	0.0	-62.67	96.95		1.029e+04	135.72	-531.87
0	_	-531.87		-1.65e-05	0.0	52.0	-62.67	96.95		1.029e+04	-354.19	3329.07
2	5	3328.79		-9.80e-03	0.0	0.0	-62.67	96.95 96.95		1.029e+04	135.72	-532.31 3328.79
2	6	-532.31 -711.30		-1.65e-05 -8.18e-04	0.0 0.0	52.0	-62.67 -88.27	154.09		1.029e+04	-354.20 245.36	-7625.30
2	O	-711.30		-3.33e-05	0.0	0.0 52.0	-88.27	154.09	-9.72 -9.72	-8724.47 -8724.47	-259.92	-7023.30
3	1	9940.65		-1.28e-03	0.0	0.0	91.34	284.29	9.46	6222.66	224.98	-2384.81
3	'	-2384.81	224.98	1.98e-05	0.0	52.0	91.34	284.29	9.46	6222.66	716.77	9940.65
3	3	1.605e+04		-8.72e-03	0.0	0.0	-75.48	298.08	8.63	2513.73	161.21	2379.81
Ü	O	2379.81	161.21	-3.82e-05	0.0	52.0	-75.48	298.08	8.63	2513.73		1.605e+04
3	4	8642.63	-127.43	2.04e-03	0.0	0.0	74.13	-359.57	-7.72	-4256.38	-127.43	8642.63
Ū	•	-8662.88	-528.90	-1.33e-05	0.0	52.0	74.13	-359.57	-7.72	-4256.38	-528.90	-8662.88
3	5	1.605e+04		-8.72e-03	0.0	0.0	-75.48	298.08	8.63	2513.51	161.22	2379.59
_	_	2379.59	161.22	-3.82e-05	0.0	52.0	-75.48	298.08	8.63	2513.51		1.605e+04
3	6	8590.40	-97.91	1.99e-03	0.0	0.0	75.05	-359.25	-7.88	-4356.86	-97.91	8590.40
		-8692.93	-507.75	-3.39e-05	0.0	52.0	75.05	-359.25	-7.88	-4356.86	-507.75	-8692.93
4	1	-3213.91	396.51	2.38e-03	0.0	0.0	53.76	-19.80	3.57	-9599.07	235.65	-3213.91
		-4626.06	235.65	2.87e-05	0.0	45.0	53.76	-19.80	3.57	-9599.07	396.51	-4626.06
4	3	1.508e+04	-93.49	4.14e-03	0.0	0.0	94.25	-66.48	-1.90	3513.95	-93.49	1.508e+04
		1.230e+04	-179.19	-2.36e-05	0.0	45.0	94.25	-66.48	-1.90	3513.95		1.230e+04
4		1.508e+04	-93.49	4.14e-03	0.0	0.0	94.25	-66.48	-1.90	3514.04		1.508e+04
		1.230e+04		-2.36e-05	0.0	45.0	94.25	-66.48	-1.90	3514.04		1.230e+04
4	6	-3881.53		-2.76e-03	0.0	0.0	-29.45	15.29		1.155e+04	84.82	-4226.01
_		-4226.01		-2.99e-05	0.0	45.0	-29.45	15.29		1.155e+04	105.22	-3881.53
5	1	2715.29	376.98	3.06e-03	0.0	0.0	-41.57	-54.65	-2.75	-6635.06	376.98	2715.29
5	2	369.44	231.86	3.05e-05	0.0	52.8	-41.57	-54.65	-2.75	-6635.06	231.86	369.44
5	2	2776.58 2268.82	9.43 7.29	3.91e-03 3.64e-06	0.0 0.0	0.0 52.8	-1.33 -1.33	-8.14 -8.14	-0.04 -0.04	2499.21 2499.21	9.43 7.29	2776.58 2268.82
5	3	-4822.46	-128.26	4.05e-03	0.0	0.0	-118.73	-55.14	0.85	-1877.02	-173.07	-4822.46
3	3	-7424.58		-2.65e-05	0.0	52.8	-118.73	-55.14	0.85	-1877.02	-128.26	-7424.58
5	4	-944.68	61.70	-3.12e-03	0.0	0.0	19.60	30.78	0.03	9349.69	59.38	-2350.56
Ŭ	•	-2350.56		-2.54e-05	0.0	52.8	19.60	30.78	0.04	9349.69	61.70	-944.68
5	5	-4823.56	-128.27	4.05e-03	0.0	0.0	-118.73	-55.15	0.85	-1876.92	-173.08	-4823.56
	•	-7425.82	-	-2.65e-05	0.0		-118.73	-55.15			-128.27	-7425.82
6	1	-3955.71		-1.07e-03	0.0	0.0	56.79	19.22	-0.14	7047.86	-380.07	-3976.43
		-3976.43		2.35e-05	0.0	49.9	56.79	19.22	-0.14	7047.86	-387.18	-3955.71
									-			
81	6	-4097.01	84 83	-3.06e-05	0.0	45.0	-14.79	-13.46	-n n7 -	1.039e+04	84.83	-4097.01
Trave		M3 mx/mn M		D 2 / D 3	Q 2 / Q 3	- 10.0	-14.73 N	V 2	V 3	T.0536+04	04.00	-1007.01
			-1079.84	-0.01	0.0		-149.26	-433.89		1.295e+04		
		3.060e+04	976.56	4.19e-03	0.0		127.41	467.42		1.414e+04		
				22.2						- · • ·		

LEGENDA RISULTATI ELEMENTI TIPO SHELL

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo shell, è possibile in relazione alle tabelle sottoriportate.

Per ogni elemento, e per ogni combinazione(o caso di carico) vengono riportati i risultati più significativi.

In particolare vengono riportati in ogni nodo di un elemento per ogni combinazione:

tensione di Von Mises (valore riassuntivo del complessivo stato di sollecitazione)						
N max		sforzo membranale principale massimo				
N min		sforzo membranale principale minimo				
M max		sforzo flessionale principale massimo				
M min		sforzo flessionale principale minimo				
N1	N2	sforzi membranali e flessionali in direzione locale 1 e 2				
N1-2	M1	dell'elemento (lo sforzo 2-1 è uguale allo sforzo 1-2 per la				
M2	M1-2	reciprocità delle tensioni tangenziali)				

I suddetti risultati possono a scelta del progettista essere preceduti o sostituiti da valori di sollecitazione non più riferiti al sistema locale dell'elemento ma al sistema globale.

In questo caso gli elementi vengono raggruppati in gruppi (M_S: macro gusci o macro setti, raggruppati per materiale, spessore, e posizione fisica) per la valutazione dei valori mediati ai nodi appartenenti agli elementi dei gruppi stessi.

I valori di sollecitazione sono, in questo caso, riferiti ad una terna specifica del gruppo ruotata di α_0 attorno all'asse Z

per i gusci e ruotata di α_V attorno alla normale (che per definizione è orizzontale) al piano del setto.

Per i setti, in particolare, se α_V è zero, l'asse '1-1 rappresenta la verticale e l'asse '2-2 l'orizzontale contenuta nel setto. Le azioni sui setti possono essere espresse anche con formato macro, cioè riferite all'intero macroelemento. In particolare vengono riportati per ogni quota Z dei nodi e per ogni combinazione i seguenti valori:

N memb.	Azione membranale complessiva agente sulla parete in direzione Z							
V memb.	Azione complessiva di taglio agente nel piano del macroelemento							
V orto	Azione complessiva di taglio agente in direzione perpendicolare al macroelemento							
M memb.	Azione flessionale complessiva agente nel piano del macroelemento							
M orto	Azione flessionale complessiva agente in direzione perpendicolare al macroelemento							
Т	Azione torsionale complessiva agente nel piano orizzontale							

Macro	Tipo	Angolo 1-X (gradi)
1	Guscio	0.0

M_G	Cmb	Nodo	N max	N min	N 1	N 2	N 1-2	M max	M min	M 1	M 2	M 1-2
			daN/cm	daN/cm	daN/cm	daN/cm	daN/cm	daN	daN	daN	daN	daN
1	1	1	0.60	-0.24	0.49	-0.13	-0.29	215.83	-212.22	55.55	-51.95	-207.17
1	1	2	0.52	-0.58	-9.22e-02	2.50e-02	0.55	235.36	-179.13	77.10	-20.87	201.37
1	1	3	1.73	0.16	1.71	0.18	0.18	59.48	-9.82	51.68	-2.03	-21.90
1	1	4	0.58	0.12	0.53	0.17	0.14	29.42	-10.63	19.93	-1.15	17.03
1	1	5	0.37	-0.12		-7.69e-02	-0.14	-449.09	-576.72	-461.83	-563.98	-38.26
1	1	6	0.80	0.61	0.73	0.68	9.05e-02	-117.13	-406.52	-210.65	-313.00	135.34
1	1	7	0.73	-0.72	-0.72		-1.98e-02	-128.42	-388.31	-224.65	-292.09	-125.50
1	1	8	-0.34	-0.59	-0.55		-8.73e-02	-188.72	-409.52	-212.60	-385.64	68.57
1	1	9	0.70	-0.46	0.68	-0.44	0.16	-198.09	-503.70	-230.46	-471.33	-94.04
1	1	10	0.62	-0.24	0.58	-0.20	-0.18	-9.11	-264.76	-12.31	-261.56	-28.43
1	1	11	0.24	-0.61	-0.57	0.20	0.18	-6.61	-251.78	-8.09	-250.30	19.00
1	1	12	-0.12	-0.51	-0.34	-0.29	-0.19	15.61	-12.36	-2.39	5.64	-13.39
1	1	13	1.22	-8.06e-02	1.22	-8.03e-02	1.92e-02	103.86	11.25	103.83	11.27	-1.49
- 1	1	14	-7.72e-02	-0.69	-9.96e-02	-0.67	0.12	-274.31	-296.33	-282.21	-288.43	-10.56
1	1	15 16	0.33 0.30	-0.10 0.25	-5.60e-02 0.28	0.28 0.26	-0.14 -2.19e-02	43.67 79.87	-61.24 -32.89	19.43 59.31	-37.01 -12.32	44.22 43.55
1	1	17	0.30	0.23	0.26	0.26	0.14	79.67	-32.69 -6.64	68.33	-12.32	15.33
1	1	17	0.69	-0.75	-0.55	0.17	-0.45	58.05	-0.04 -161.75	14.31	-3.51	87.76
1	1	19	0.44	-0.73	-0.33	0.23	-0.43	74.18	-101.73	30.19	-53.08	74.82
1	1	20	0.55	-1.03	-0.19	0.43	-0.28	90.27	-209.38	-0.54	-118.57	137.71
1	1	21	0.00	-0.48	-0.01	0.27	-0.73	78.16	-154.09	-6.19	-69.74	111.70
1	1	22	0.77	-0.46	-0.25	0.33	-0.44	97.06	-249.84	-20.36	-132.41	164.15
1	1	23	0.80	-0.31	-0.15	0.63	-0.40	43.48	-242.35	-69.39	-129.48	139.72
1	1	24	0.63	-0.25	0.17	0.20	-0.44	59.81	-268.83	-25.34	-183.68	143.99
1	i	25	0.68	0.17	0.21	0.65	-0.13	-27.70	-353.25	-139.68	-241.26	154.65
1	1	26	0.60	-0.20	0.39	3.25e-03	-0.35	3.04	-259.74	-17.45	-239.26	70.45
1	1	27	0.67	-0.12	0.52	3.34e-02	-0.31	-124.90	-396.02	-137.55	-383.37	57.18
1	1	28	0.74	-0.43	0.73	-0.42	8.25e-02	-225.79	-396.98	-225.83	-396.94	-2.62
1	1	29	0.57	0.26	0.57	0.26	1.48e-02	84.67	-2.26	77.47	4.95	23.97
1	1	30	1.12	0.17	1.09	0.20	0.17	93.35	-8.00	92.54	-7.20	9.02
1	1	31	0.57	5.43e-02	0.11	0.52	-0.16	54.27	-41.78	26.42	-13.93	43.59
1	1	32	0.80	-0.14	-3.47e-02	0.69	-0.30	28.52	-99.06	-31.29	-39.25	63.67
1	1	33	0.91	9.78e-03	9.09e-02	0.83	-0.26	-50.31	-208.36	-131.21	-127.45	79.00
1	1	34	0.87	0.29	0.38	0.78	-0.21	-189.33	-323.52	-265.00	-247.85	66.54
1	1	35	0.60	0.14	0.58	0.15	-7.89e-02	-584.06	-700.24	-591.53	-692.78	28.49
1	1	36	0.52	-0.45	0.48	-0.41	-0.20	-297.79	-407.79	-403.43	-302.15	-21.46
1	1	37	0.84	0.30	0.84	0.30	1.71e-02	80.37	9.62	80.08	9.91	-4.51
1	1	38	0.57	0.23	0.36	0.44	-0.17	21.71	3.60	20.20	5.11	-5.00
1	1	39	0.72	4.32e-02	0.18	0.58	-0.27	-28.23	-60.10	-59.79	-28.54	-3.13

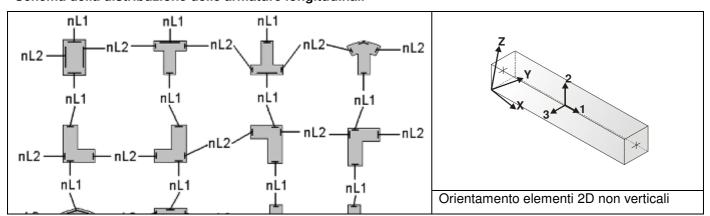
1	1	40	0.77	0.21	0.22	0.76	-7.85e-02	-138.94	-188.65	-188.64	-138.95	0.66
1	1	41	0.87	0.65	0.65	0.87	-5.11e-03	-307.06	-338.77	-307.72	-338.10	4.54
1	1	42	0.64	0.32	0.63	0.33	4.95e-02	-239.91	-517.78	-240.21	-517.48	-9.21
1	1	43	0.49	-0.16	-0.13	0.45	0.14	-712.42	-860.55	-745.02	-827.94	-61.37
1	1	44	0.35	-0.20	-0.12	0.28	0.19	-282.83	-426.66	-426.20	-283.30	-8.14
1	1	45	0.62	-6.50e-02	-1.55e-02	0.57	-0.18	-176.66	-383.33	-320.50	-239.48	-95.06
1	1	46	0.60	7.06e-02	9.16e-02	0.58	-0.10	-43.75	-227.89	-149.44	-122.19	-91.06
1	1	47	0.62	0.16	0.32	0.45	-0.22	44.14	-108.98	-30.65	-34.19	-76.54
1	1	48	0.68	0.21	0.59	0.29	-0.18	73.94	-49.34	35.58	-10.97	-57.07
1	6	208	0.11	-1.40	-1.40	0.10	-4.58e-02	23.75	-42.01	-21.88	3.62	30.31
M_G			N max	N min	N 1	N 2	N 1-2	M max	M min	M 1	M 2	M 1-2
				-2.85	-2.40	-2.63	-1.01		-860.55	-745.02	-827.94	-240.95
			3.11		1.87	2.84	1.28	378.24		268.55	378.04	246.53

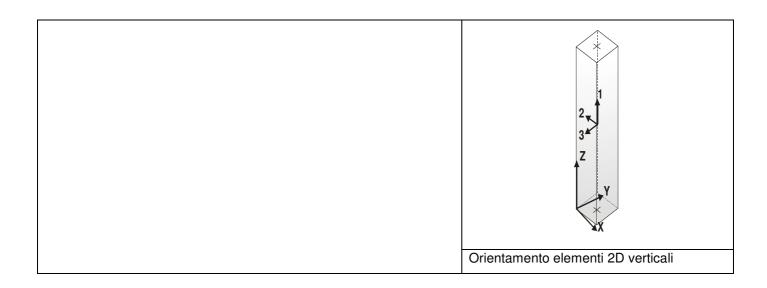
2.2.2 TABULATI VERIFICHE AGLI STATI LIMITE ULTIMI

VERIFICHE ELEMENTI TRAVE C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (**T.A.**) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.


Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (**S.L.**) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.


Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

Schema della distribuzione delle armature longitudinali

Simbologia adottata nelle tabelle di verifica

Per le verifiche alle T.A. di pilastri e travi è presente una tabella con i simboli di seguito descritti:

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
M_TZPP	Numero della travata, quota media pilastrata iniziale e finale (nodo in assenza di pilastrata)
Pilas. o Trave	numero identificativo dell'elemento D2
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m); nella terza riga viene riportato il
	valore delle snellezze in direzione 2-2 e 3-3
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Quota	Ascissa del punto di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Armat. long.	Numero e diametro dei ferri di armatura longitudinale: ferri di vertice + ferri di lato (come da fig. precedente)
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup	Area di armatura longitudinale posta all'estradosso della trave
Sc max	Massima tensione di compressione del calcestruzzo
Sc med	Massima tensione media di compressione del calcestruzzo
Sf max	Tensione massima nell'acciaio
staffe	Vengono riportati i dati del tratto di staffatura in cui cade la sezione di verifica; in particolare: numero dei
	bracci, diametro, passo, lunghezza tratto
Tau max	Tensione massima tangenziale nel cls
Rif. comb	Combinazioni in cui si generano i seguenti valori di tensione:
	Sc max, Sc med, Sf max, Tau max
AfV	area dell'armatura atta ad assorbire le azioni di taglio
AfT	area dell'armatura atta ad assorbire le azioni di torsione
Scorr. P	Scorrimento dei piegati
Af long.	Area del ferro longitudinale aggiuntivo per assorbire la torsione

Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro

Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ^* : valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la
	verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle
	posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto
	7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo,
	lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Per le verifiche alla G.R. dei pilastri è presente una tabella con i simboli di seguito descritti:

Pilas.	numero identificativo dell'elemento D2 pilastro
sovr. Xi (Xf)	Verifica sovraresistenza come da formula 7.4.4 in direzione X, alla base (i) ed alla sommità (f): rapporto
	tra i momenti resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del γ_{Rd} adottato
sovr. Yi (Yf)	Verifica sovraresistenza come da formula 7.4.4 in direzione Y, alla base (i) ed alla sommità (f): rapporto
	tra i momenti resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del γ_{Rd} adottato
M 2-2 i (f)	Valore del momento resistente 2-2 alla base (i) ed alla sommità (f) con massimo momento in presenza
	dello sforzo normale di calcolo
M 3-3 i (f)	Valore del momento resistente 3-3 alla base (i) ed alla sommità (f) con massimo momento in presenza
	dello sforzo normale di calcolo
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M2-2 (M3-3)	Valore del taglio generato dai momenti resistenti 2-2 (3-3)

Per le verifiche dei dettagli costruttivi per la duttilità è presente una tabella con i simboli di seguito descritti: (Non presente nel caso di comportamento strutturale non dissipativo)

Pilas	Numero identificativo D2 pilastro
ni	Sforzo assiale adimensionalizzato di progetto relativo alla combinazione sismica SLV
alfaomega	Prodotto tra il coefficiente di efficacia del confinamento e il rapporto meccanico dell'armatura trasversale
	di confinamento all'interno del nodo
V.7.4.29 2-2 (3-	Rapporto tra la domanda di staffe minima nel nodo e il rapporto meccanico dell'armatura trasversale di
3)	confinamento inserito all'interno del nodo in direzione 2 (3)
V. 7.4.29 Stato	Codici relativi all'esito della verifica 7.4.29
dmu_fi 2-2 (3-3)	Domanda in duttilità di curvatura in direzione 2 (3)
cmu_fi 2-2 (3-3)	Capacità in duttilità di curvatura in direzione 2 (3)
V. dutt. 2-2 (3-3)	Rapporto tra la domanda in duttilità di curvatura e la capacità in duttilità di curvatura in direzione 2 (3)

Per le verifiche nodi trave-pilastro è presente una tabella con i simboli di seguito descritti:

Nodo	Numero identificativo del nodo trave-pilastro
Stato	Esito delle verifiche

Pilastro	Numero identificativo D2 pilastro
Diam st	Diametro staffe nodo
Passo	Passo staffe nodo
n. br. 2 (3)	Numero braccia staffe per il taglio in direzione 2 (3)
Bj2 (3)	Larghezza effettiva del nodo per il taglio in direzione 2 (3)
Hjc2 (3)	Distanza tra le giaciture più esterne delle armature del pilastro per il taglio in direzione 2 (3)
V. 7.4.8	Rapporto tra il taglio Vjbd e il taglio resistente come da formula 7.4.8
V. Ash	Rapporto tra il passo staffe calcolato secondo il capitolo 7.4.4.3.1. e il passo staffe effattivamente inserita
	nel nodo. Nel caso di valore indica passo staffe utilizzato deriva dalle formule presenti nel paragrafo
	7.4.4.3.1. Nel caso di valore minore di 1 il passo staffe utilizzato deriva del pilastro superiore o inferiore
	al nodo
7.4.10	Check passo staffe valutato in funzione della formula 7.4.10:
	 SI il passo staffe è calcolato utilizzando la formula 7.4.10; NO il passo staffe è calcolato utilizzando le formule 7.4.11 e/o 7.4.12; NR calcolo passo staffe non richiesto;
Rif. comb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il nodo

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

M_T Z P P	Numero della travata (T), quota media (Z), nº pilastrata iniziale (P) e finale (P) (nodo in assenza di							
	pilastrata)							
Trave	numero identificativo dell'elemento D2							
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle							
	verifiche effettuate appresso descritte							
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo							
Af inf.	Area di armatura longitudinale posta all'intradosso							
Af sup	Area di armatura longitudinale posta all'estradosso							
Af long.	Area complessiva armatura longitudinale							
x/d	rapporto tra posizione dell'asse neutro e altezza utile							
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva							
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo,							
	lunghezza L tratto							
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva							
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave							

Per le verifiche alla G.R. delle travi è presente una tabella con i simboli di seguito descritti:

Trave	numero identificativo dell'elemento D2 trave
M negativo i (f)	Valore del momento resistente negativo all' estremità iniziale i (finale f) della trave
M positivo i (f)	Valore del momento resistente positivo all' estremità iniziale i (finale f) della trave
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M-i M+f	Taglio generato dai momenti resistenti negativo i e positivo f
V M+i M-f	Taglio generato dai momenti resistenti positivo i e negativo f
VEd, min	Valore di taglio minimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
VEd, max	Valore di taglio massimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
Vr1	Valore di taglio come da formula 7.4.1 per armatura diagonale (solo per CD "A")

VERIFICHE FONDAZIONI

II D.M.17/01/2018 - par: 7.2.5 prevede:

"Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le seguenti:

- > quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo;
- **▶** [...];
- > quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

Nel contesto visualizzazione risultati e nella stampa della relazione sulle fondazioni PRO_SAP mostra le sollecitazioni che derivano dall'analisi non incrementate sia in termini di pressioni sul terreno che in termini di sollecitazioni.

La progettazione degli elementi strutturali con proprietà fondazione è effettuata da PRO_SAP (per travi e platee) o da PRO_CAD Plinti (per plinti e pali di fondazione) incrementando le sollecitazioni delle combinazioni con sisma di un coefficiente pari 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

Per i bicchieri dei plinti di fondazione prefabbricati l'incremento delle sollecitazioni ha un fattore pari a 1.2 in CDB e 1.35 in CDA.

N.B.: nel caso di comportamento strutturale non dissipativo la progettazione viene effettuata senza nessun incremento.

Le verifiche geotecniche vengono effettuate dal modulo geotecnico incrementando automaticamente le sollecitazioni del fattore 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

N.B.: nel caso di comportamento strutturale non dissipativo le verifiche geotecniche vengono effettuate senza nessun incremento.

Macro Guscio	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
1	40 00	Q	2	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+A	f sec- <i>l</i>	Af sec+	N x daN/cm	N y daN/cm	N xy daN/cm	M x daN	M y daN	M xy daN
1	ok	0.10	1.60e-02	1.75e-04	10.1	10.1	10.1	10.1	0.6	0.2	1.85e-02	59.9	-48.6	-209.3
2	ok	0.10	1.76e-02	2.05e-04	10.1	10.1	10.1	10.1	-0.1	-1.1	-0.2	-45.2	83.6	187.4
3	ok	0.10	1.76e-02 1.95e-02	4.59e-05	10.1	10.1	10.1	10.1	0.2	-0.2	-0.2	-267.0	3.6	28.7
4	ok	0.10	1.94e-02	5.06e-05	10.1	10.1	10.1	10.1	0.2	-0.2	0.1	-265.9	3.6	-28.5
5	ok	0.10	4.36e-02	2.03e-04	10.1	10.1	10.1	10.1	2.72e-02	-0.2	-0.4	-483.0	-581.1	-20.5 -41.5
6	_	0.10	4.56e-02 3.57e-02	5.48e-04	10.1	-	10.1	10.1	-1.7	-0.3 -2.2		-331.8	-391.5	126.9
_	ok				-	10.1		-			-1.2			
7	ok	0.10	3.34e-02	4.90e-04	10.1	10.1	10.1	10.1	-1.7	-1.7	1.1	-292.2	-378.6	-117.5
8	ok	0.10	3.39e-02	4.26e-04	10.1	10.1	10.1	10.1	-1.2	-1.4	-1.1	-270.0	-439.4	75.2
9	ok	0.10	4.23e-02	5.63e-04	10.1	10.1	10.1	10.1	-0.4	-1.6	-1.1	-254.8	-541.8	-115.8
10	ok	0.10	2.06e-02	1.06e-04	10.1	10.1	10.1	10.1			-0.2	-16.4	-276.3	-45.7
11	ok	0.10	1.94e-02	2.58e-04	10.1	10.1	10.1	10.1	-0.2	0.5	7.59e-02	-12.1	-263.1	35.3
12	ok	0.10	1.22e-03	8.85e-05	10.1	10.1	10.1	10.1	-0.3	-0.3	-0.2	-2.4	5.6	-13.4
13	ok	0.10	3.12e-02	5.25e-05	10.1	10.1	10.1	10.1	0.8	0.3	4.04e-02	-429.6	-43.3	-27.7
14	ok	0.10	2.59e-02	1.66e-04	10.1	10.1	10.1	10.1	-0.2	-0.7	0.4	-297.4	-341.2	-32.5
15	ok	0.10	1.98e-02	1.30e-04	10.1	10.1	10.1	10.1	0.8	-0.1	-4.99e-02	-263.2	19.0	-55.0
16	ok	0.10	2.62e-02	8.82e-05	10.1	10.1	10.1	10.1	0.8	-7.68e-02	-0.2	-356.3	-1.3	-44.6
17	ok	0.10	2.65e-02	5.75e-05	10.1	10.1	10.1	10.1	0.3	-0.1	0.1	-365.4	5.2	-21.8
18	ok	0.10	1.96e-02	1.57e-04	10.1	10.1	10.1	10.1	1.1	-0.3	0.3	-250.4	72.2	-79.5
19	ok	0.10	2.48e-02	1.11e-04	10.1	10.1	10.1	10.1	1.1		-3.78e-02	-326.0	36.6	-52.2
20	ok	0.10	1.96e-02	3.05e-04	10.1	10.1	10.1	10.1	1.1	-0.3	0.5	-235.4	54.8	-108.2
21	ok	0.10	2.33e-02	1.84e-04	10.1	10.1	10.1	10.1	1.0	-0.7	0.3	-303.1	8.6	-79.7
22	ok	0.10	1.89e-02	2.19e-04	10.1	10.1	10.1	10.1	0.4	0.8	0.2	-153.7	-177.7	-85.2
	OIL	0.10			10.1	10.1	10.1	10.1	0.7	0.0	0.2	100.7	177.7	00.2

23	ok	0.10	2.06e-02	1.73e-04	10.1	10.1	10.1	10.1	0.3	0.5	1.26e-02	-149.3	-183.9	-48.2
24	ok	0.10	1.97e-02	2.02e-04	10.1	10.1	10.1	10.1	-6.59e-04	1.0	0.2	-139.8	-228.5	-73.7
25	ok	0.10	2.81e-02	2.75e-04	10.1	10.1	10.1	10.1	0.8	0.8	0.6	-160.6	-249.1	178.5
26	ok	0.10	1.92e-02	2.16e-04	10.1	10.1	10.1	10.1	-0.6	1.1	-8.42e-02	-123.1	-234.1	-29.7
27	ok	0.10	3.23e-02	3.73e-04	10.1	10.1	10.1	10.1	-5.44e-02	-1.4	0.6	-170.9	-403.9	68.0
28	ok	0.10	3.06e-02	1.93e-04	10.1	10.1	10.1	10.1	0.7	-0.3	-3.50e-02	-260.1	-420.1	22.4
29	ok	0.10	2.98e-02	1.08e-04	10.1	10.1	10.1	10.1	0.8	0.1	-0.3	-411.8	-21.6	-16.0
30	ok	0.10	3.03e-02	7.23e-05	10.1	10.1	10.1	10.1	0.4	-0.4	-0.1	-414.8	27.1	-9.1
31	ok	0.10	2.72e-02	1.33e-04	10.1	10.1	10.1	10.1	1.0	-0.6	5.96e-03	-372.7	-28.2	-34.2
32	ok	0.10	2.46e-02	1.89e-04	10.1	10.1	10.1	10.1	1.0	-0.7	0.2	-334.2	-16.2	-44.3
33	ok	0.10	2.04e-02	2.29e-04	10.1	10.1	10.1	10.1	-0.4	0.2	-0.3	-152.0	-176.7	14.0
34	ok	0.10	2.51e-02	2.89e-04	10.1	10.1	10.1	10.1	0.2	0.6	-0.3	-271.0	-274.1	75.0
35	ok	0.10	6.09e-02	4.64e-04	10.1	10.1	10.1	10.1	0.7	-1.7	-1.3	-637.8	-837.0	-26.0
36	ok	0.10	3.17e-02	1.48e-04	10.1	10.1	10.1	10.1	0.8	-0.5	-0.5	-413.5	-322.9	-54.5
37	ok	0.10	3.04e-02	8.07e-05	10.1	10.1	10.1	10.1	0.6	-0.3	5.39e-02	-416.0	-32.6	6.1
38	ok	0.10	2.78e-02	9.39e-05	10.1	10.1	10.1	10.1	1.0	-0.4	0.1	-382.2	-38.8	7.2
39	ok	0.10	2.43e-02	1.54e-04	10.1	10.1	10.1	10.1	1.0	-0.5	0.1	-333.0	-23.0	9.2
40	ok	0.10	1.96e-02		10.1	10.1	10.1	10.1	-0.7	-0.2	-0.5	-246.3	-145.2	31.8
41	ok	0.10	2.84e-02	2.52e-04	10.1	10.1	10.1	10.1	0.6	0.9	0.7	-307.7	-374.7	40.0
42	ok	0.10	4.29e-02	2.45e-04	10.1	10.1	10.1	10.1	0.6	-0.4	0.6	-262.2	-591.5	-15.3
43	ok	0.10	6.96e-02	5.35e-04	10.1	10.1	10.1	10.1	-2.3	-1.25e-02	-1.5	-909.8	-827.1	-81.9
44	ok	0.10	3.69e-02	2.52e-04	10.1	10.1	10.1	10.1	-1.1	0.2	0.6	-507.2	-280.4	-20.2
45	ok	0.10	3.00e-02	4.15e-04	10.1	10.1	10.1	10.1	-1.6	0.1	0.8	-356.4	-298.5	-79.0
46	ok	0.10	2.05e-02	2.58e-04	10.1	10.1	10.1	10.1	1.2	0.8	0.1	-138.5	-116.9	-98.9
47	ok	0.10	2.47e-02		10.1	10.1	10.1	10.1	1.0		2.75e-02	-332.8	-16.3	47.5
48	ok	0.10	2.73e-02	1.20e-04	10.1	10.1	10.1	10.1	1.0	-0.6	0.2	-371.8	-28.5	37.0
208	ok	0.10	8.73e-03	3.01e-04	10.1	10.1	10.1	10.1	-1.7	-8.61e-02	0.2	-106.0	11.4	39.0
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec		,	N xy	Мх	Му	Мху
									-2.58		-1.53	-909.83	-904.54	-241.67
		0.10	0.07	1.02e-03	10.05	10.05	10.05	10.05	1.73	2.22	1.22	270.42	248.85	248.55

Nodo	Stato	Max tau daN/cm2	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr daN/cm	V sec daN/cm
1	ok	0.17						
	ok	0.18						
3	ok	0.18						
4	ok	0.17						
2 3 4 5 6 7 8 9	ok	0.39						
6	ok	0.35						
7	ok	0.32						
8	ok	0.32						
9	ok	0.34						
10	ok	0.13						
11	ok	0.15						
12	ok	0.09						
13	ok	0.05						
14	ok	0.43						
15	ok	0.13						
16	ok	0.10						
17	ok	0.13						
18	ok	0.09						
19	ok	0.06						
20	ok	0.11						
21	ok	0.08						
22	ok	0.07						
23	ok	0.10						
24	ok	0.10						
25	ok	0.29						
26	ok	0.14						
27	ok	0.37						
28	ok	0.37						
29	ok	0.07						
30 31	ok ok	0.07 0.08						
32		0.08						
33	ok ok	0.15						
34	ok	0.15						
35	ok	0.94						
36	ok	0.48						
37	ok	0.48						
38	ok	0.04						
39	ok	0.07						
40	ok	0.10						
41	ok	0.34						
	O.C.	0.01						

42	ok	0.41						
43	ok	1.41						
44	ok	0.42						
45	ok	0.41						
46	ok	0.16						
47	ok	0.12						
48	ok	0.09						
208	ok	0.38						
Nodo		Max tau 1.57	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		1.57						

3. RELAZIONE SUI MATERIALI

3.1. ELENCO DEI MATERIALI IMPIEGATI E LORO MODALITÀ DI POSA IN OPERA

CALCESTRUZZO PER ELEVAZIONE IN C.A.

- Calcestruzzo di classe non inferiore a 35 N/mm² con diametro max inerte D= 32 mm (D=19 mm per solai e solette) e lavorabilità (slump) S4;
- Classe di esposizione XC2.

ACCIAIO PER CEMENTO ARMATO

- Acciaio per c.a. IN BARRE AD ADERENZA MIGLIORATA TIPO FeB450C CONTROLLATO

11.2.1 SPECIFICHE PER IL CALCESTRUZZO

La prescrizione del calcestruzzo all'atto del progetto deve essere caratterizzata almeno mediante la classe di resistenza, la classe di consistenza ed il diametro massimo dell'aggregato. La classe di resistenza è contraddistinta dai valori caratteristici delle resistenze cubica R_{ck} e cilindrica f_{ck} a compressione uniassiale, misurate su provini normalizzati e cioè rispettivamente su cilindri di diametro 150 mm e di altezza 300 mm e su cubi di spigolo 150 mm.

Al fine delle verifiche sperimentali i provini prismatici di base 150×150 mm e di altezza 300 mm sono equiparati ai cilindri di cui sopra.

Al fine di ottenere le prestazioni richieste, si dovranno dare indicazioni in merito alla composizione, ai processi di maturazione ed alle procedure di posa in opera, facendo utile riferimento alla norma UNI ENV 13670-1:2001 ed alle Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, nonché dare indicazioni in merito alla composizione della miscela, compresi gli eventuali additivi, tenuto conto anche delle previste classi di esposizione ambientale (di cui, ad esempio, alla norma UNI EN 206-1: 2006) e del requisito di durabilità delle opere.

La resistenza caratteristica a compressione è definita come la resistenza per la quale si ha il 5% di probabilità di trovare valori inferiori. Nelle presenti norme la resistenza caratteristica designa quella dedotta da prove su provini come sopra descritti, confezionati e stagionati come specificato al § 11.2.4, eseguite a 28 giorni di maturazione. Si dovrà tener conto degli effetti prodotti da eventuali processi accelerati di maturazione. In tal caso potranno essere indicati altri tempi di maturazione a cui riferire le misure di resistenza ed il corrispondente valore caratteristico.

Il conglomerato per il getto delle strutture di un'opera o di parte di essa si considera omogeneo se confezionato con la stessa miscela e prodotto con medesime procedure.

11.2.2 CONTROLLI DI QUALITÀ DEL CALCESTRUZZO

Il calcestruzzo va prodotto in regime di controllo di qualità, con lo scopo di garantire che rispetti le prescrizioni definite in sede di progetto.

Il controllo si articola nelle seguenti fasi:

Valutazione preliminare della resistenza

Serve a determinare, prima dell'inizio della costruzione delle opere, la miscela per produrre il calcestruzzo con la resistenza caratteristica di progetto.

Controllo di produzione

Riguarda il controllo da eseguire sul calcestruzzo durante la produzione del calcestruzzo stesso.

Controllo di accettazione

Riguarda il controllo da eseguire sul calcestruzzo prodotto durante l'esecuzione dell'opera, con prelievo effettuato contestualmente al getto dei relativi elementi strutturali.

Prove complementari

11.2.3 VALUTAZIONE PRELIMINARE DELLA RESISTENZA

Il costruttore, prima dell'inizio della costruzione di un'opera, deve effettuare idonee prove preliminari di studio, per ciascuna miscela omogenea di calcestruzzo da utilizzare, al fine di ottenere le prestazioni richieste dal progetto.

Il costruttore resta comunque responsabile della qualità del calcestruzzo, che sarà controllata dal Direttore dei Lavori, secondo le procedure di cui al § 11.2.5.

11.2.4 PRELIEVO DEI CAMPIONI

Un prelievo consiste nel prelevare dagli impasti, al momento della posa in opera ed alla presenza del Direttore dei Lavori o di persona di sua fiducia, il calcestruzzo necessario per la confezione di un gruppo di due provini.

La media delle resistenze a compressione dei due provini di un prelievo rappresenta la "Resistenza di prelievo" che costituisce il valore mediante il quale vengono eseguiti i controlli del calcestruzzo.

È obbligo del Direttore dei Lavori prescrivere ulteriori prelievi rispetto al numero minimo, di cui ai successivi paragrafi, tutte le volte che variazioni di qualità e/o provenienza dei costituenti dell'impasto possano far presumere una variazione di qualità del calcestruzzo stesso, tale da non poter più essere considerato omogeneo.

Per la preparazione, la forma, le dimensioni e la stagionatura dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-1:2002 e UNI EN 12390-2:2002.

Circa il procedimento da seguire per la determinazione della resistenza a compressione dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-3:2003 e UNI EN 12390-4:2002.

Circa il procedimento da seguire per la determinazione della massa volumica vale quanto indicato nella norma UNI EN 12390-7:2002.

11.2.5 CONTROLLO DI ACCETTAZIONE

Il Direttore dei Lavori ha l'obbligo di eseguire controlli sistematici in corso d'opera per verificare la conformità delle caratteristiche del calcestruzzo messo in opera rispetto a quello stabilito dal progetto e sperimentalmente verificato in sede di valutazione preliminare

Il controllo di accettazione va eseguito su miscele omogenee e si configura, in funzione del quantitativo di calcestruzzo in accettazione, nel:

- controllo di tipo A di cui al § 11.2.5.1
- controllo di tipo B di cui al § 11.2.5.2

Il controllo di accettazione è positivo ed il quantitativo di calcestruzzo accettato se risultano verificate le disuguaglianze di cui alla Tab. 11.2.I seguente:

Tabella 11.2.I

Controllo di tipo A	Controllo di tipo B
F	$R_1 \ge \text{Rck-}3,5$

$R_m \ge Rck + 1.4 s$
(N° prelievi ≥15)
relievi (N/mm²); enza dei prelievi (N/mm²);

11.2.5.1 Controllo di tipo A

Il controllo di tipo A è riferito ad un quantitativo di miscela omogenea non maggiore di 300 m³. Ogni controllo di accettazione di tipo A è rappresentato da tre prelievi, ciascuno dei quali eseguito su un massimo di 100 m³ di getto di miscela omogenea. Risulta quindi un controllo di accettazione ogni 300 m³ massimo di getto. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Nelle costruzioni con meno di 100 m³ di getto di miscela omogenea, fermo restando l'obbligo di almeno 3 prelievi e del rispetto delle limitazioni di cui sopra, è consentito derogare dall'obbligo di prelievo giornaliero.

11.2.5.2 Controllo di tipo B

Nella realizzazione di opere strutturali che richiedano l'impiego di più di 1500 m³ di miscela omogenea è obbligatorio il controllo di accettazione di tipo statistico (tipo B).

Il controllo è riferito ad una definita miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m³ di calcestruzzo.

Per ogni giorno di getto di miscela omogenea va effettuato almeno un prelievo, e complessivamente almeno 15 prelievi sui 1500 m³.

Se si eseguono controlli statistici accurati, l'interpretazione dei risultati sperimentali può essere svolta con i metodi completi dell'analisi statistica assumendo anche distribuzioni diverse dalla normale. Si deve individuare la legge di distribuzione più corretta e il valor medio unitamente al coefficiente di variazione (rapporto tra deviazione standard e valore medio). In questo caso la resistenza minima di prelievo R_1 dovrà essere maggiore del valore corrispondente al frattile inferiore 1%.

Per calcestruzzi con coefficiente di variazione (s / R_m) superiore a 0,15 occorrono controlli più accurati, integrati con prove complementari di cui al §11.2.6.

Non sono accettabili calcestruzzi con coefficiente di variazione superiore a 0,3.

11.2.5.3 Prescrizioni comuni per entrambi i criteri di controllo

Il prelievo dei provini per il controllo di accettazione va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo e dispone l'identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare riferimento a tale verbale.

La domanda di prove al laboratorio deve essere sottoscritta dal Direttore dei Lavori e deve contenere precise indicazioni sulla posizione delle strutture interessate da ciascun prelievo.

Le prove non richieste dal Direttore dei Lavori non possono fare parte dell'insieme statistico che serve per la determinazione della resistenza caratteristica del materiale.

Le prove a compressione vanno eseguite conformemente alle norme UNI EN 12390-3:2003.

I certificati di prova emessi dai laboratori devono contenere almeno:

- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del committente dei lavori in esecuzione e del cantiere di riferimento;
- il nominativo del Direttore dei Lavori che richiede la prova;
- la descrizione, l'identificazione e la data di prelievo dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni provati, dopo eventuale rettifica;
- le modalità di rottura dei campioni;
- la massa volumica del campione;
- i valori di resistenza misurati.

Per gli elementi prefabbricati di serie, realizzati con processo industrializzato, sono valide le specifiche indicazioni di cui al § 11.8.3.1

L'opera o la parte di opera non conforme ai controlli di accettazione non può essere accettata finché la non conformità non è stata definitivamente rimossa dal costruttore, il quale deve procedere ad una verifica delle caratteristiche del calcestruzzo messo in opera mediante l'impiego di altri mezzi d'indagine, secondo quanto prescritto dal Direttore dei Lavori e conformemente a quanto indicato nel successivo § 11.2.6. Qualora gli ulteriori controlli confermino i risultati ottenuti, si dovrà procedere ad un controllo teorico e/o sperimentale della sicurezza della struttura interessata dal quantitativo di calcestruzzo non conforme, sulla base della resistenza ridotta del calcestruzzo.

Ove ciò non fosse possibile, ovvero i risultati di tale indagine non risultassero soddisfacenti si può dequalificare l'opera, eseguire lavori di consolidamento ovvero demolire l'opera stessa.

I "controlli di accettazione" sono obbligatori ed il collaudatore è tenuto a controllarne la validità, qualitativa e quantitativa; ove ciò non fosse, il collaudatore è tenuto a far eseguire delle prove che attestino le caratteristiche del calcestruzzo, seguendo la medesima procedura che si applica quando non risultino rispettati i limiti fissati dai "controlli di accettazione".

11.2.6 CONTROLLO DELLA RESISTENZA DEL CALCESTRUZZO IN OPERA

Nel caso in cui le resistenze a compressione dei provini prelevati durante il getto non soddisfino i criteri di accettazione della classe di resistenza caratteristica prevista nel progetto, oppure sorgano dubbi sulla qualità e rispondenza del calcestruzzo ai valori di resistenza determinati nel corso della qualificazione della miscela, oppure si renda necessario valutare a posteriori le proprietà di un calcestruzzo precedentemente messo in opera, si può procedere ad una valutazione delle caratteristiche di resistenza attraverso una serie di prove sia distruttive che non distruttive. Tali prove non devono, in ogni caso, intendersi sostitutive dei controlli di accettazione.

Il valor medio della resistenza del calcestruzzo in opera (definita come resistenza strutturale) è in genere inferiore al valor medio della resistenza dei prelievi in fase di getto maturati in condizioni di laboratorio (definita come resistenza potenziale). È accettabile un valore medio della resistenza strutturale, misurata con tecniche opportune (distruttive e non distruttive) e debitamente trasformata in resistenza cilindrica o cubica, non inferiore all'85% del valore medio definito in fase di progetto. Per la modalità di determinazione della resistenza strutturale si potrà fare utile riferimento alle norme UNI EN 12504-1:2002, UNI EN 12504-2:2001, UNI EN 12504-3:2005, UNI EN 12504-4:2005 nonché alle Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

CARPENTERIA METALLICA: ACCIAIO S 275 norma EN 10025, EN 10210, EN 10219-1

fyk = tensione caratteristica di snervamento = 2750 daN/cm²

ftk = tensione caratteristica di rottura = 4300 daN/cm²

E = modulo di elasticità normale = 2100000 daN/cm²

G = modulo di elasticità tangenziale = 807692 daN/cm²

g = peso specifico = 7850 daN/m³

Tutta la struttura sarà sottoposta a zincatura e verniciatura in officina.

PRESCRIZIONI COMUNI A TUTTE LE TIPOLOGIE DI ACCIAIO

Controlli

Le presenti norme prevedono tre forme di controllo obbligatorie:

- in stabilimento di produzione, da eseguirsi sui lotti di produzione;
- nei centri di trasformazione, da eseguirsi sulle forniture;
- di accettazione in cantiere, da eseguirsi sui lotti di spedizione.

A tale riguardo si definiscono:

Lotti di produzione: si riferiscono a produzione continua, ordinata cronologicamente mediante apposizione di contrassegni al prodotto finito (rotolo finito, bobina di trefolo, fascio di barre, ecc.). Un lotto di produzione deve avere valori delle grandezze nominali omogenee (dimensionali, meccaniche, di formazione) e può essere compreso tra 30 e 120 tonnellate.

Forniture: sono lotti formati da massimo 90 t, costituiti da prodotti aventi valori delle grandezze nominali omogenee.

Lotti di spedizione: sono lotti formati da massimo 30 t, spediti in un'unica volta, costituiti da prodotti aventi valori delle grandezze nominali omogenee.

Controlli di produzione in stabilimento e procedure di qualificazione

Tutti gli acciai oggetto delle presenti norme, siano essi destinati ad utilizzo come armature per cemento armato ordinario o precompresso o ad utilizzo diretto come carpenterie in strutture metalliche devono essere prodotti con un sistema permanente di controllo interno della produzione in stabilimento che deve assicurare il mantenimento dello stesso livello di affidabilità nella conformità del prodotto finito, indipendentemente dal processo di produzione.

Fatto salvo quanto disposto dalle norme europee armonizzate, ove applicabili, il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001:2000 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021:2006.

Ai fini della certificazione del sistema di gestione della qualità del processo produttivo il produttore e l'organismo di certificazione di processo potranno fare utile riferimento alle indicazioni contenute nelle relative norme disponibili UNI EN 10080:2005, della serie UNI EN 10025:2005, UNI EN 10210:2006 e UNI EN 10219:2006.

Quando non sia applicabile la marcatura CE, ai sensi del DPR n.246/93 di recepimento della direttiva 89/106/CEE, la valutazione della conformità del controllo di produzione in stabilimento e del prodotto finito è effettuata attraverso la procedura di qualificazione di seguito indicata.

Il Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei lavori pubblici è organismo abilitato al rilascio dell'attestato di qualificazione per gli acciai di cui sopra.

L'inizio della procedura di qualificazione deve essere preventivamente comunicato al Servizio Tecnico Centrale allegando una relazione ove siano riportati:

 elenco e caratteristiche dei prodotti che si intende qualificare (tipo, dimensioni, caratteristiche meccaniche e chimiche, ecc.);

- indicazione dello stabilimento e descrizione degli impianti e dei processi di produzione;
- descrizione dell'organizzazione del controllo interno di qualità con indicazione delle responsabilità aziendali;
- copia della certificazione del sistema di gestione della qualità;
- indicazione dei responsabili aziendali incaricati della firma dei certificati;
- descrizione particolareggiata delle apparecchiature e degli strumenti del Laboratorio interno di stabilimento per il controllo continuo di qualità;
- dichiarazione con la quale si attesti che il servizio di controllo interno della qualità sovrintende ai controlli di produzione ed è indipendente dai servizi di produzione;
- modalità di marchiatura che si intende adottare per l'identificazione del prodotto finito;
- 9) descrizione delle condizioni generali di fabbricazione del prodotto nonché dell'approvvigionamento delle materie prime e del prodotto intermedio (billette, rotoli, vergella, lamiere, laminati, ecc.);
- copia controllata del manuale di qualità aziendale, coerente alla norma UNI EN ISO 9001:2000.

Il Servizio Tecnico Centrale verifica la completezza e congruità della documentazione presentata e procede a una verifica documentale preliminare della idoneità dei processi produttivi e del Sistema di Gestione della Qualità nel suo complesso.

Se tale verifica preliminare ha esito positivo, il Servizio Tecnico Centrale potrà effettuare una verifica ispettiva presso lo stabilimento di produzione.

Il risultato della Verifica Documentale Preliminare unitamente al risultato della Verifica Ispettiva saranno oggetto di successiva valutazione da parte del Servizio Tecnico Centrale per la necessaria ratifica e notifica al produttore. In caso di esito positivo il Produttore potrà proseguire nella Procedura di Qualificazione del Prodotto. In caso negativo saranno richieste al Produttore le opportune azioni correttive che dovranno essere implementate.

La Procedura di Qualificazione del Prodotto continua con:

- esecuzione delle Prove di Qualificazione a cura di un Laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato dal Servizio Tecnico Centrale su proposta del produttore secondo le procedure di cui al § 11.3.1.4;
- invio dei risultati delle prove di qualificazione da sottoporre a giudizio di conformità al Servizio Tecnico Centrale da parte del laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato;
- in caso di giudizio positivo il Servizio Tecnico Centrale provvede al rilascio dell'Attestato di Qualificazione al produttore e inserisce il Produttore nel Catalogo Ufficiale dei Prodotti Qualificati che sarà reso pubblicamente disponibile;
- in caso di giudizio negativo, il Produttore può individuare le cause delle non conformità, apportare le opportune azioni correttive, dandone comunicazione sia al Servizio Tecnico Centrale che al Laboratorio incaricato e successivamente ripetere le prove di qualificazione.

Il prodotto può essere immesso sul mercato solo dopo il rilascio dell'Attestato di Qualificazione. La qualificazione ha validità 5 (cinque) anni.

Mantenimento e rinnovo della qualificazione

Per il mantenimento della qualificazione i Produttori sono tenuti, con cadenza semestrale entro 60 giorni dalla data di scadenza del semestre di riferimento ad inviare al Servizio Tecnico Centrale:

- dichiarazione attestante la permanenza delle condizioni iniziali di idoneità del processo produttivo, dell'organizzazione del controllo interno di produzione in fabbrica;
- i risultati dei controlli interni eseguiti nel semestre sul prodotto nonché la loro elaborazione statistica con l'indicazione del quantitativo di produzione e del numero delle prove;
- 3) i risultati dei controlli eseguiti nel corso delle prove di verifica periodica della qualità, da parte

del laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato;

4) la documentazione di conformità statistica dei parametri rilevati (di cui ai prospetti relativi agli acciai specifici) nel corso delle prove di cui ai punti 2) e 3). Per la conformità statistica tra i risultati dei controlli interni ed i risultati dei controlli effettuati dal Laboratorio incaricato, devono essere utilizzati metodi statistici di confronto delle varianze e delle medie delle due serie di dati, secondo i procedimenti del controllo della qualità (a tal fine si potrà fare utile riferimento alle norme UNI 6809:1972 e UNI 6806:1972).

Il Produttore deve segnalare al Servizio Tecnico Centrale ogni eventuale modifica al processo produttivo o al sistema di controllo anche temporanea.

Il Servizio Tecnico Centrale esamina la documentazione, ne accerta la conformità ai requisiti previsti nelle presenti norme e rilascia l'Attestato di Conferma della qualificazione.

Ogni sospensione della produzione deve essere tempestivamente comunicata al Servizio Tecnico Centrale indicandone le motivazioni. Qualora la produzione venga sospesa per oltre un anno, la procedura di qualificazione deve essere ripetuta. La sospensione della produzione non esenta gli organismi incaricati dall'effettuare le visite di ispezione periodica della qualità di processo di cui ai §§ 11.3.2.11, 11.3.2.12, 11.3.3.5 e 11.3.4.11.

Il Servizio Tecnico Centrale può effettuare o far effettuare, in qualsiasi momento, al Laboratorio incaricato ulteriori visite ispettive finalizzate all'accertamento della sussistenza dei requisiti previsti per la qualificazione.

Al termine del periodo di validità di 5 (cinque) anni dell'Attestato di Qualificazione il produttore deve chiedere il rinnovo, il Servizio Tecnico Centrale, valutata anche la conformità relativa all'intera documentazione fornita nei 5 (cinque) anni precedenti, rinnoverà la qualificazione.

Il mancato invio della documentazione di cui sopra entro i previsti sessanta giorni ovvero l'accertamento da parte del Servizio Tecnico Centrale di rilevanti non conformità, comporta la sospensione ovvero la decadenza della qualificazione.

Identificazione e rintracciabilità dei prodotti qualificati

Ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marchiatura indelebile depositata presso il Servizio Tecnico Centrale, dalla quale risulti, in modo inequivocabile, il riferimento all'Azienda produttrice, allo Stabilimento, al tipo di acciaio ed alla sua eventuale saldabilità.

Ogni prodotto deve essere marchiato con identificativi diversi da quelli di prodotti aventi differenti caratteristiche, ma fabbricati nello stesso stabilimento e con identificativi differenti da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso produttore. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva a sé stante, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso produttore, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato.

Considerata la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in fasci, differenti possono essere i sistemi di marchiatura adottati, anche in relazione all'uso, quali ad esempio l'impressione sui cilindri di laminazione, la punzonatura a caldo e a freddo, la stampigliatura a vernice, la targhettatura, la sigillatura dei fasci e altri. Permane comunque l'obbligatorietà del marchio di laminazione per quanto riguarda barre e rotoli.

Comunque, per quanto possibile, anche in relazione all'uso del prodotto, il produttore è tenuto a marchiare ogni singolo pezzo. Ove ciò non sia possibile, per la specifica tipologia del prodotto, la marchiatura deve essere tale che prima dell'apertura dell'eventuale ultima e più piccola confezione (fascio, bobina, rotolo, pacco, ecc.) il prodotto sia riconducibile al produttore, al tipo di acciaio nonché al lotto di produzione e alla data di produzione.

Tenendo presente che l'elemento determinante della marchiatura è costituito dalla sua inalterabilità nel tempo e, dalla impossibilità di manomissione, il produttore deve rispettare le modalità di marchiatura dichiarate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

La mancata marchiatura, la non corrispondenza a quanto depositato o la sua illeggibilità, anche parziale, rendono il prodotto non impiegabile.

Qualora, sia presso gli utilizzatori, sia presso i commercianti, l'unità marchiata (pezzo singolo o fascio) venga scorporata, per cui una parte, o il tutto, perda l'originale marchiatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

Nel primo caso i campioni destinati al laboratorio incaricato delle prove di cantiere devono essere accompagnati dalla sopraindicata documentazione e da una dichiarazione di provenienza rilasciata dal Direttore dei Lavori, quale risulta dai documenti di accompagnamento del materiale.

I produttori ed i successivi intermediari devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni. Ai fini della rintracciabilità dei prodotti, il costruttore deve inoltre assicurare la conservazione della medesima documentazione, unitamente a marchiature o etichette di riconoscimento, fino al completamento delle operazioni di collaudo statico.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio possono essere emesse dal Servizio Tecnico Centrale.

Tutti i certificati relativi alle prove meccaniche degli acciai, sia in stabilimento che in cantiere o nel luogo di lavorazione, devono riportare l'indicazione del marchio identificativo, rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle presenti Norme e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

In tal caso il materiale non può essere utilizzato ed il Laboratorio incaricato è tenuto ad informare di ciò il Servizio Tecnico Centrale.

Forniture e documentazione di accompagnamento

Tutte le forniture di acciaio, per le quali non sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla copia dell'attestato di qualificazione del Servizio Tecnico Centrale.

L'attestato può essere utilizzato senza limitazione di tempo.

Il riferimento a tale attestato deve essere riportato sul documento di trasporto.

Le forniture effettuate da un commerciante intermedio devono essere accompagnate da copia dei documenti rilasciati dal Produttore e completati con il riferimento al documento di trasporto del commerciante stesso.

Il Direttore dei Lavori prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del produttore.

Prove di qualificazione e verifiche periodiche della qualità

I laboratori incaricati, di cui all'art. 59 del DPR n. 380/2001, devono operare secondo uno specifico piano di qualità approvato dal Servizio Tecnico Centrale.

I certificati di prova emessi dovranno essere uniformati ad un modello standard elaborato dal Servizio Tecnico Centrale.

I relativi certificati devono contenere almeno:

- l'identificazione dell'azienda produttrice e dello stabilimento di produzione;
- l'indicazione del tipo di prodotto e della eventuale dichiarata saldabilità;
- il marchio di identificazione del prodotto depositato presso il Servizio Tecnico Centrale;
- gli estremi dell'attestato di qualificazione nonché l'ultimo attestato di conferma della qualificazione (per le sole verifiche periodiche della qualità);
- la data del prelievo, il luogo di effettuazione delle prove e la data di emissione del certificato;
- le dimensioni nominali ed effettive del prodotto ed i risultati delle prove eseguite;
- l'analisi chimica per i prodotti dichiarati saldabili (o comunque utilizzati per la fabbricazione di prodotti finiti elettrosaldati);
- le elaborazioni statistiche previste nei §§: 11.3.2.11, 11.3.2.12, 11.3.3.5 e 11.3.4.10.

I prelievi in stabilimento sono effettuati, ove possibile, dalla linea di produzione.

Le prove possono essere effettuate dai tecnici del laboratorio incaricato, anche presso lo stabilimento del produttore, qualora le attrezzature utilizzate siano tarate e la loro idoneità sia accertata e documentata.

Di ciò ne deve essere fatta esplicita menzione nel rapporto di prova nel quale deve essere presente la dichiarazione del rappresentante del laboratorio incaricato relativa all'idoneità delle attrezzature utilizzate

In caso di risultato negativo delle prove il Produttore deve individuare le cause e apportare le opportune azioni correttive, dandone comunicazione al Laboratorio incaricato e successivamente ripetere le prove di verifica.

Le specifiche per l'effettuazione delle prove di qualificazione e delle verifiche periodiche della qualità, ivi compresa la cadenza temporale dei controlli stessi, sono riportate rispettivamente nei punti seguenti:

- § 11.3.2.11, per acciai per cemento armato in barre o rotoli;
- § 11.3.2.12, per acciai per reti e tralicci elettrosaldati;
- § 11.3.3.5, per acciai per cemento armato precompresso;
- § 11.3.4.11, per acciai per carpenterie metalliche.

Centri di trasformazione

Si definisce Centro di trasformazione un impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre o rotoli, reti, lamiere o profilati, profilati cavi, ecc.) e confeziona elementi strutturali direttamente impiegabili in cantiere, pronti per la messa in opera o per successive lavorazioni.

Il Centro di trasformazione può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dalla documentazione prevista al § 11.3.1.5.

Particolare attenzione deve essere posta nel caso in cui nel centro di trasformazione, vengano utilizzati elementi base, comunque qualificati, ma provenienti da produttori differenti, attraverso specifiche procedure documentate che garantiscano la rintracciabilità dei prodotti. Il trasformatore deve dotarsi di un sistema di controllo della lavorazione allo scopo di assicurare che le lavorazioni effettuate non comportino alterazioni tali da compromettere le caratteristiche meccaniche e geometriche dei prodotti originari previste dalle presenti norme.

Il sistema di gestione della qualità del prodotto, che sovrintende al processo di trasformazione, deve essere predisposto in coerenza con la norma UNI EN ISO 9001:2000 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con la norma UNI CEI EN ISO/IEC 17021:2006.

Tutti i prodotti forniti in cantiere dopo l'intervento di un trasformatore devono essere accompagnati da idonea documentazione, specificata nel seguito, che identifichi in modo inequivocabile il centro di trasformazione stesso.

I centri di trasformazione sono identificati, ai sensi delle presenti Norme, come "luogo di lavorazione" e, come tali, sono tenuti ad effettuare una serie di controlli atti a garantire la permanenza delle caratteristiche, sia meccaniche che geometriche, del materiale originario. I controlli devono essere effettuati secondo le disposizioni riportate nel seguito per ciascuna tipologia di acciaio lavorato.

Nell'ambito del processo produttivo deve essere posta particolare attenzione ai processi di piegatura e di saldatura. In particolare il Direttore Tecnico del centro di trasformazione deve verificare, tramite opportune prove, che le piegature e le saldature, anche nel caso di quelle non resistenti, non alterino le caratteristiche meccaniche originarie del prodotto. Per i processi sia di saldatura che di piegatura, si potrà fare utile riferimento alla normativa europea applicabile.

Per quanto sopra, è fatto obbligo a tali centri di nominare un Direttore Tecnico dello stabilimento che opererà secondo il disposto dell'art. 64, comma 3, del DPR 380/01.

I centri di trasformazione sono tenuti a dichiarare al Servizio Tecnico Centrale la loro attività, indicando l'organizzazione, i procedimenti di lavorazione, le massime dimensioni degli elementi base utilizzati, nonché fornire copia della certificazione del sistema di gestione della qualità che sovrintende al processo di trasformazione. Ogni centro di trasformazione dovrà inoltre indicare un proprio logo o marchio che identifichi in modo inequivocabile il centro stesso.

Nella dichiarazione deve essere indicato l'impegno ad utilizzare esclusivamente elementi di base qualificati all'origine.

Alla dichiarazione deve essere allegata la nota di incarico al Direttore Tecnico del centro di trasformazione, controfirmata dallo stesso per accettazione ed assunzione delle responsabilità, ai sensi delle presenti norme, sui controlli sui materiali.

Il Servizio Tecnico Centrale attesta l'avvenuta presentazione della dichiarazione di cui sopra.

La dichiarazione sopra citata deve essere confermata annualmente al Servizio Tecnico Centrale, con allegata una dichiarazione attestante che nulla è variato rispetto al precedente deposito, ovvero siano descritte le avvenute variazioni.

Ogni fornitura in cantiere di elementi presaldati, presagomati o preassemblati deve essere accompagnata:

- a) da dichiarazione, su documento di trasporto, degli estremi dell'attestato di avvenuta dichiarazione di attività, rilasciato dal Servizio Tecnico Centrale, recante il logo o il marchio del centro di trasformazione;
- b) dall'attestazione inerente l'esecuzione delle prove di controllo interno fatte eseguire dal Direttore Tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata. Qualora il Direttore dei Lavori lo richieda, all'attestazione di cui sopra potrà seguire copia dei certificati relativi alle prove effettuate nei giorni in cui la lavorazione è stata effettuata.

Il Direttore dei Lavori è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del centro di trasformazione. Della documentazione

di cui sopra dovrà prendere atto il collaudatore, che riporterà, nel Certificato di collaudo, gli estremi del centro di trasformazione che ha fornito l'eventuale materiale lavorato.

ACCIAIO PER CEMENTO ARMATO

È ammesso esclusivamente l'impiego di acciai saldabili qualificati secondo le procedure di cui al precedente § 11.3.1.2 e controllati con le modalità riportate nel § 11.3.2.11.

Acciaio per cemento armato B450C

L'acciaio per cemento armato B450C è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

Tabella 11.3.Ia

f _{y nem}	450 N/mm ²		
f _{i nem}	540 N/mm ²		

e deve rispettare i requisiti indicati nella seguente Tab. 11.3. Ib:

Tabella 11.3.Ib

CARATTERISTICHE	REQUISITI	FRATTILE (%) 5.0	
Tensione caratteristica di snervamento f_{ik}	≥ f _{y noni}		
Tensione caratteristica di rottura f _{ik}	≥f _{inem}	5.0	
$(\mathbf{f}/\mathbf{f}_{j})_{k}$	≥1,15 <1,35	10.0	
$(f_{v}/f_{vnim})_{k}$	≤1,25	10.0	
Allungamento (Ag):	≥ 7,5 %	10.0	
Diametro del mandrino per prove di piegamento a 90 ° e successivo raddrizzamento senza cricche: $\phi \le 12 \text{ mm}$	4 ф		
$12{\le}\varphi{\le}16~\text{mm}$	5 ф		
per 16 < φ≤25 mm	8ф		
	10 ♦		

Per l'accertamento delle caratteristiche meccaniche vale quanto indicato al § 11.3.2.3.

Acciaio per cemento armato B450A

L'acciaio per cemento armato B450A, caratterizzato dai medesimi valori nominali delle tensioni di snervamento e rottura dell'acciaio B450C, deve rispettare i requisiti indicati nella seguente Tab. 11.3.Ic.

Tabella 11.3.Ic

CARATTERISTICHE		REQUISITI	FRATTILE (%)	
Tensione caratteristica di snervamento	f_{vk}	≥ f _{r nom}	5.0	
Tensione caratteristica di rottura	fa	≥ f _{i nem}	5.0	
(f/f,)h	33	≥1,05	10.0	
$(f_v/f_{vnern})_k$		≤1,25	10.0	
Allungamento $(A_{ii})_k$:		≥ 2,5 %	10.0	

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:	-	
per φ ≤ 10 mm	4φ	

Per l'accertamento delle caratteristiche meccaniche vale quanto indicato al § 11.3.2.3.

Accertamento delle proprietà meccaniche

Per l'accertamento delle proprietà meccaniche di cui alle precedenti tabelle vale quanto indicato nella norma UNI EN ISO 15630-1: 2004.

Per acciai deformati a freddo, ivi compresi i rotoli, le proprietà meccaniche sono determinate su provette mantenute per 60 minuti a 100 ± 10 °C e successivamente raffreddate in aria calma a temperatura ambiente.

In ogni caso, qualora lo snervamento non sia chiaramente individuabile, si sostituisce I_{y} con $I_{(0,2)}$.

La prova di piegamento e raddrizzamento si esegue alla temperatura di 20 ± 5 °C piegando la provetta a 90° , mantenendola poi per 60 minuti a 100 ± 10 °C e procedendo, dopo raffreddamento in aria, al parziale raddrizzamento per almeno 20° . Dopo la prova il campione non deve presentare cricche.

Caratteristiche dimensionali e di impiego

L'acciaio per cemento armato è generalmente prodotto in stabilimento sotto forma di barre o rotoli, reti o tralicci, per utilizzo diretto o come elementi di base per successive trasformazioni.

Prima della fornitura in cantiere gli elementi di cui sopra possono essere saldati, presagomati (staffe, ferri piegati, ecc.) o preassemblati (gabbie di armatura, ecc.) a formare elementi composti direttamente utilizzabili in opera.

La sagomatura e/o l'assemblaggio possono avvenire:

- in cantiere, sotto la vigilanza della Direzione Lavori;
- in centri di trasformazione, solo se provvisti dei requisiti di cui al § 11.3.1.7.

Tutti gli acciai per cemento armato devono essere ad aderenza migliorata, aventi cioè una superficie dotata di nervature o indentature trasversali, uniformemente distribuite sull'intera lunghezza, atte ad aumentarne l'aderenza al conglomerato cementizio.

Per quanto riguarda la marchiatura dei prodotti vale quanto indicato al § 11.3.1.4.

Per la documentazione di accompagnamento delle forniture vale quanto indicato al § 11.3.1.5

Le barre sono caratterizzate dal diametro Ø della barra tonda liscia equipesante, calcolato nell'ipotesi che la densità dell'acciaio sia pari a 7,85 kg/dm³.

Gli acciai B450C, di cui al § 11.3.2.1, possono essere impiegati in barre di diametro ∅ compreso tra 6 e 40 mm.

Per gli acciai B450A, di cui al § 11.3.2.2 il diametro ∅ delle barre deve essere compreso tra 5 e 10 mm

L'uso di acciai forniti in rotoli è ammesso, senza limitazioni, per diametri fino a $\emptyset \le 16$ mm per B450C e fino a $\emptyset \le 10$ mm per B450A.

Reti e tralicci elettrosaldati

Gli acciai delle reti e tralicci elettrosaldati devono essere saldabili.

L'interasse delle barre non deve superare 330 mm.

I tralicci sono dei componenti reticolari composti con barre ed assemblati mediante saldature.

Per le reti ed i tralicci costituiti con acciaio di cui al § 11.3.2.1 gli elementi base devono avere diametro \emptyset che rispetta la limitazione: 6 mm $\leq \emptyset \leq$ 16 mm.

Per le reti ed i tralicci costituiti con acciaio di cui al § 11.3.2.2 gli elementi base devono avere diametro \emptyset che rispetta la limitazione: 5 mm $\leq \emptyset \leq$ 10 mm.

Il rapporto tra i diametri delle barre componenti reti e tralicci deve essere:

$$\emptyset_{\min} / \emptyset_{\max} \ge 0.6$$
. (11.3.11)

I nodi delle reti devono resistere ad una forza di distacco determinata in accordo con la norma UNI EN ISO 15630-2:2004 pari al 25% della forza di snervamento della barra, da computarsi per quella di diametro maggiore sulla tensione di snervamento pari a 450 N/mm². Tale resistenza al distacco della saldatura del nodo, va controllata e certificata dal produttore di reti e di tralicci secondo le procedure di qualificazione di seguito riportate.

In ogni elemento di rete o traliccio le singole armature componenti devono avere le stesse caratteristiche. Nel caso dei tralicci è ammesso l'uso di staffe aventi superficie liscia perché realizzate con acciaio B450A oppure B450C saldabili.

La produzione di reti e tralicci elettrosaldati può essere effettuata a partire da materiale di base prodotto nello stesso stabilimento di produzione del prodotto finito o da materiale di base proveniente da altro stabilimento.

Nel caso di reti e tralicci formati con elementi base prodotti in altro stabilimento, questi ultimi possono essere costituiti:

- a) da acciai provvisti di specifica qualificazione;
- da elementi semilavorati quando il produttore, nel proprio processo di lavorazione, conferisca al semilavorato le caratteristiche meccaniche finali richieste dalla norma.

In ogni caso il produttore dovrà procedere alla qualificazione del prodotto finito, rete o traliccio, secondo le procedure di cui al punto 11.3.2.11.

Ogni pannello o traliccio deve essere inoltre dotato di apposita marchiatura che identifichi il produttore della rete o del traliccio stesso.

La marchiatura di identificazione può essere anche costituita da sigilli o etichettature metalliche indelebili con indicati tutti i dati necessari per la corretta identificazione del prodotto, ovvero da marchiatura supplementare indelebile. In ogni caso la marchiatura deve essere identificabile in modo permanente anche dopo annegamento nel calcestruzzo.

Laddove non fosse possibile tecnicamente applicare su ogni pannello o traliccio la marchiatura secondo le modalità sopra indicate, dovrà essere comunque apposta su ogni pacco di reti o tralicci un'apposita etichettatura con indicati tutti i dati necessari per la corretta identificazione del prodotto e del produttore; in questo caso il Direttore dei Lavori, al momento dell'accettazione della fornitura in cantiere deve verificare la presenza della predetta etichettatura.

Nel caso di reti e tralicci formati con elementi base prodotti nello stesso stabilimento, ovvero in stabilimenti del medesimo produttore, la marchiatura del prodotto finito può coincidere con la marchiatura dell'elemento base, alla quale può essere aggiunto un segno di riconoscimento di ogni singolo stabilimento.

Centri di trasformazione

Si definisce Centro di trasformazione, nell'ambito degli acciai per cemento armato, un impianto esterno al produttore e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre o rotoli, reti, ecc.) e confeziona elementi strutturali direttamente impiegabili in opere in cemento armato quali, ad esempio, elementi saldati e/o presagomati (staffe, ferri piegati, ecc.) o preassemblati (gabbie di armatura), pronti per la messa in opera.

Il Centro di trasformazione deve possedere tutti i requisiti previsti al § 11.3.1.7.

Saldabilità

L'analisi chimica effettuata su colata e l'eventuale analisi chimica di controllo effettuata sul prodotto finito deve soddisfare le limitazioni riportate nella Tab. 11.3. Il dove il calcolo del carbonio equivalente C_{∞} è effettuato con la seguente formula:

$$C_{eq} = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$
 (11.3.12)

in cui i simboli chimici denotano il contenuto degli elementi stessi espresso in percentuale.

Tabella 11.3.II - Massimo contenuto di elementi chimici in %

	0.00	Analisi di prodotto	Analisi di colata
Carbonio	C	0,24	0,22
Fosforo	P	0,055	0,050
Zolfo	S	0,055	0,050
Rame	Cu	0,85	0,80
Azoto	N	0,014	0,012
Carbonio equivalente	Ces	0,52	0,50

È possibile eccedere il valore massimo di C dello 0,03% in massa, a patto che il valore del C_{eq}. Venga ridotto dello 0,02% in massa.

Contenuti di azoto più elevati sono consentiti in presenza di una sufficiente quantità di elementi che fissano l'azoto stesso.

Tolleranze dimensionali

La deviazione ammissibile per la massa nominale deve essere come riportato nella Tab. 11.3.III seguente.

Tabella 11.3.III

Diametro nominale, (mm)	5 ≤ Ф ≤ 8	8<Ф≤40
Tolleranza in % sulla sezione ammessa per l'impiego	± 6	± 4,5

Controlli sistematici in stabilimento

Generalità

Le prove di qualificazione e di verifica periodica, di cui ai successivi punti, devono essere ripetute per ogni prodotto avente caratteristiche differenti o realizzato con processi produttivi differenti, anche se provenienti dallo stesso stabilimento.

I rotoli devono essere soggetti a qualificazione separata dalla produzione in barre e dotati di marchiatura differenziata.

Prove di qualificazione

Il laboratorio incaricato deve effettuare, senza preavviso, presso lo stabilimento di produzione, il prelievo di una serie di 75 saggi, ricavati da tre diverse colate o lotti di produzione, venticinque per ogni colata o lotto di produzione, scelti su tre diversi diametri opportunamente differenziati, nell'ambito della gamma prodotta. Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Sui campioni vengono determinati, a cura del laboratorio incaricato, i valori delle tensioni di snervamento e rottura $f_v e f_t$ l'allungamento A_{gt} ed effettuate le prove di piegamento.

Procedura di valutazione

Valutazione dei risultati

Le grandezze caratteristiche f_y, f_t, A_{gt} ed il valore inferiore di f_t/f_y devono soddisfare la seguente relazione:

$$\overline{x} - k s \ge C_v \tag{11.3.13}$$

La grandezza caratteristica (f_y/f_{ynom})_k ed il valore superiore di f_t/f_y devono soddisfare la seguente relazione:

$$\overline{x} + k s \le C_v \tag{11.3.14}$$

dove:

C_v = valore prescritto per le singole grandezze nelle tabelle di cui ai §§ 11.3.2.1 e 11.3.2.2

 \overline{x} = valore medio

s = deviazione standard della popolazione

k = \hat{e} il coefficiente riportato in Tab. 11.3. IV per f_t , f_y ed (f_y/f_{ymom}) e in Tab. 11.3. V per A_{gt} e

f./f., e stabilito in base al numero dei saggi.

In ogni caso il coefficiente k assume, in funzione di n, i valori riportati nelle Tab. 11.3.IV e 11.3.V.

Su almeno un saggio per colata o lotto di produzione è calcolato il valore dell'area relativa di nervatura o di dentellatura di cui al § 11.3.2.10.5.

Qualora uno dei campioni sottoposti a prova di qualificazione non soddisfi i requisiti di resistenza o duttilità di cui al § 11.3.2 delle presenti norme tecniche, il prelievo relativo al diametro di cui trattasi va ripetuto ed il nuovo prelievo sostituisce a tutti gli effetti quello precedente. Un ulteriore risultato negativo comporta la ripetizione della prova di qualificazione.

Tabella 11.3.IV − f_y − f_t − f_e/f_{y nem} − Coefficiente k in funzione del numero n di campioni (per una probabilità di Insuccesso attesa del 5 % [p = 0,95] con una probabilità del 90 %)

п	k	n	K
5	3,40	30	2,08
6	3,09	40	2,01
7	2,89	50	1,97
6 7 8 9	2,75	60	1,93
9	2,65	70	1,90
10	2,57	80	1,89
11	2,50	90	1,87
	2,45 2,40 2,36	100	1,86
12 13 14 15	2,40	150	1,82
14	2,36	200	1,79
15	2,33	250	1,78
16	2,30	300	1,77
17	2,27	400	1,75
18	2,25	500	1,74
19	2,23	1000	1,71
20	2,21	9136248	1,64

Tabella 11.3.V − A_{gt}, f_i/f_y − Coefficiente k in funzione del numero n di campioni (per una probabilità di insuccesso attesa del 10 % [p = 0,90] con una probabilità del 90 %)

П	k	п	K
5	2,74	30	1,66
6	2,49	40	1,60
7	2,33	50	1,56
8	2,22	60	1,53
8 9 10	2,13	70	1,51
10	2,07	80	1,49
11	2,01	90	1,48
	1,97	100	1,47
12 13 14 15	1,93	150	1,43
14	1,90	200	1,41
15	1,87	250	1,40
16	1,84	300	1,39
17	1,82	400	1,37
18	1,80	500	1,36
19	1,78	1000	1,34
20	1,77		1,282

Prove periodiche di verifica della qualità

Ai fini della verifica della qualità il laboratorio incaricato deve effettuare controlli saltuari, ad intervalli non superiori a tre mesi, prelevando tre serie di 5 campioni, costituite ognuna da cinque barre di uno stesso diametro, scelte con le medesime modalità contemplate nelle prove a carattere statistico di cui al punto 11.3.2.10.1.2, e provenienti da una stessa colata.

Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica. Su tali serie il laboratorio

effettua le prove di resistenza e di duttilità. I corrispondenti risultati delle prove di snervamento e rottura vengono introdotti nelle precedenti espressioni, le quali vengono sempre riferite a cinque serie di cinque saggi, facenti parte dello stesso gruppo di diametri, da aggiornarsi ad ogni prelievo, aggiungendo la nuova serie ed eliminando la prima in ordine di tempo. I nuovi valori delle medie e degli scarti quadratici così ottenuti vengono quindi utilizzati per la determinazione delle nuove tensioni, caratteristiche, sostitutive delle precedenti (ponendo n= 25).

Ove i valori caratteristici riscontrati risultino inferiori ai minimi di cui ai §§ 11.3.2.1 e 11.3.2.2, il laboratorio incaricato ne da comunicazione al Servizio Tecnico Centrale e ripete le prove di qualificazione solo dopo che il produttore ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Qualora uno dei campioni sottoposti a prova di verifica della qualità non soddisfi i requisiti di duttilità di cui ai citati §§ 11.3.2.1 e 11.3.2.2, il prelievo relativo al diametro di cui trattasi va ripetuto. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta la ripetizione della qualificazione.

Le tolleranze dimensionali di cui al § 11.3.2.8 vanno riferite alla media delle misure effettuate su tutti i saggi di ciascuna colata o lotto di produzione.

Su almeno un saggio per colata o lotto di produzione è calcolato il valore dell'area relativa di nervatura o di dentellatura.

Controlli su singole colate o lotti di produzione

I produttori già qualificati possono richiedere, di loro iniziativa, di sottoporsi a controlli su singole colate o lotti di produzione, eseguiti a cura di un laboratorio di cui all'art. 59 del DPR n. 380/2001. Le colate o lotti di produzione sottoposti a controllo devono essere cronologicamente ordinati nel quadro della produzione globale. I controlli consistono nel prelievo, per ogni colata e lotto di produzione e per ciascun gruppo di diametri da essi ricavato, di un numero n di saggi, non inferiore a dieci, sui quali si effettuano le prove previste al § 11.3.2.11.1.2. Le tensioni caratteristiche di snervamento e rottura vengono calcolate a mezzo delle espressioni di cui al § 11.3.2.11.1.3 nelle quali n è il numero dei saggi prelevati dalla colata.

Controlli nei centri di trasformazione.

I controlli sono obbligatori e devono essere effettuati:

- a) in caso di utilizzo di barre, su ciascuna fornitura, o comunque ogni 90 t;
- b) in caso di utilizzo di rotoli, ogni dieci rotoli impiegati.

Qualora non si raggiungano le quantità sopra riportate, in ogni caso deve essere effettuato almeno un controllo per ogni giorno di lavorazione.

Ciascun controllo è costituito da 3 spezzoni di uno stesso diametro per ciascuna fornitura, sempre che il marchio e la documentazione di accompagnamento dimostrino la provenienza del materiale da uno stesso stabilimento. In caso contrario i controlli devono essere estesi alle eventuali forniture provenienti da altri stabilimenti.

I controlli devono consistere in prove di trazione e piegamento e devono essere eseguiti dopo il raddrizzamento.

In caso di utilizzo di rotoli deve altresi essere effettuata, con frequenza almeno mensile, la verifica dell'area relativa di nervatura o di dentellatura, secondo il metodo geometrico di cui alla seconda parte del punto 11.3.2.10.5.

Tutte le prove suddette devono essere eseguite dopo le lavorazioni e le piegature atte a dare ad esse le forme volute per il particolare tipo di impiego previsto.

Le prove di cui sopra devono essere eseguite e certificate dai laboratori di cui all'art. 59 del DPR n. 380/2001.

Il Direttore tecnico di stabilimento curerà la registrazione di tutti i risultati delle prove di controllo interno su apposito registro, di cui dovrà essere consentita la visione a quanti ne abbiano titolo.

Controlli di accettazione in cantiere.

I controlli di accettazione in cantiere sono obbligatori, devono essere effettuati entro 30 giorni dalla data di consegna del materiale e devono essere campionati, nell'ambito di ciascun lotto di spedizione, con le medesime modalità contemplate nelle prove a carattere statistico di cui al punto 11.3.2.10.1.2, in ragione di 3 spezzoni, marchiati, di uno stesso diametro, scelto entro ciascun lotto, sempre che il marchio e la documentazione di accompagnamento dimostrino la provenienza del materiale da uno stesso stabilimento. In caso contrario i controlli devono essere estesi ai lotti provenienti da altri stabilimenti.

I valori di resistenza ed allungamento di ciascun campione, accertati in accordo con il punto 11.3.2.3, da eseguirsi comunque prima della messa in opera del prodotto riferiti ad uno stesso diametro, devono essere compresi fra i valori massimi e minimi riportati nella tabella seguente:

Caratteristica	Valore limite	NOTE
f, minimo	425 N/mm ²	(450 - 25) N/mm ²
f, massimo	572 N/mm ²	[450 x (1,25+0,02)] N/mm
A _{st} minimo	≥ 6,0%	per acciaiB450C
A _{st} minimo	≥ 2,0%	per acciai B450A
Rottura/snervamento	$1,13 \le f_t / f_v \le 1,37$	per acciai B450C
Rottura/snervamento	$f_{i} / f_{v} \ge 1,03$	per acciai B450A
Piegamento/raddrizzamento	assenza di cricche	per tutti

Tabella 11.3.VI - Valori di accettazione

Questi limiti tengono conto della dispersione dei dati e delle variazioni che possono intervenire tra diverse apparecchiature e modalità di prova.

Nel caso di campionamento e prova in cantiere, che deve essere effettuata entro 30 giorni dalla data di consegna del materiale in cantiere, qualora la determinazione del valore di una quantità fissata non sia conforme al valore di accettazione, il valore dovrà essere verificato prelevando e provando tre provini da prodotti diversi nel lotto consegnato.

Se un risultato è minore del valore, sia il provino che il metodo di prova devono essere esaminati attentamente. Se nel provino è presente un difetto o si ha ragione di credere che si sia verificato un errore durante la prova, il risultato della prova stessa deve essere ignorato. In questo caso occorrerà prelevare un ulteriore (singolo) provino.

Se i tre risultati validi della prova sono maggiori o uguali del prescritto valore di accettazione, il lotto consegnato deve essere considerato conforme.

Se i criteri sopra riportati non sono soddisfatti, 10 ulteriori provini devono essere prelevati da prodotti diversi del lotto in presenza del produttore o suo rappresentante che potrà anche assistere all'esecuzione delle prove presso un laboratorio di cui all'art. 59 del DPR n. 380/2001.

Il lotto deve essere considerato conforme se la media dei risultati sui 10 ulteriori provini è maggiore del valore caratteristico e i singoli valori sono compresi tra il valore minimo e il valore massimo secondo quanto sopra riportato.

In caso contrario il lotto deve essere respinto e il risultato segnalato al Servizio Tecnico Centrale.

Il prelievo dei campioni va effettuato a cura del Direttore dei Lavori o di tecnico di sua fiducia che deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio incaricato siano effettivamente quelli da lui prelevati.

Qualora la fornitura, di elementi sagomati o assemblati, provenga da un Centro di trasformazione, il Direttore dei Lavori, dopo essersi accertato preliminarmente che il suddetto Centro di trasformazione sia in possesso di tutti i requisiti previsti al § 11.3.1.7, può recarsi presso il medesimo Centro di trasformazione ed effettuare in stabilimento tutti i controlli di cui sopra. In tal caso il prelievo dei campioni viene effettuato dal Direttore tecnico del centro di trasformazione secondo le disposizioni del Direttore dei Lavori; quest'ultimo deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio incaricato siano effettivamente quelli da lui prelevati, nonché sottoscrivere la relativa richiesta di prove.

La domanda di prove al Laboratorio autorizzato deve essere sottoscritta dal Direttore dei Lavori e deve contenere indicazioni sulle strutture interessate da ciascun prelievo.

In caso di mancata sottoscrizione della richiesta di prove da parte del Direttore dei Lavori, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi del presente decreto e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

I certificati emessi dai laboratori devono obbligatoriamente contenere almeno:

- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del committente dei lavori in esecuzione e del cantiere di riferimento;
- il nominativo del Direttore dei Lavori che richiede la prova;
- la descrizione e l'identificazione dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni;
- i valori delle grandezze misurate e l'esito delle prove di piegamento.

I certificati devono riportare, inoltre, l'indicazione del marchio identificativo rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle presenti norme e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

Prove di aderenza

Ai fini della qualificazione, le barre devono superare con esito positivo prove di aderenza conformemente al metodo Beam – test da eseguirsi presso uno dei laboratori di cui all'art. 59 del DPR n. 380/2001, con le modalità specificate nella norma UNI EN 10080:2005.

Le tensioni di aderenza ricavate devono soddisfare le seguenti relazioni:

$$\tau_m \ge 0.098 (80 - 1.2 \, \emptyset)$$
 (11.3.15)
 $\tau_c \ge 0.098 (130 - 1.9 \, \emptyset)$ (11.3.16)

essendo:

il diametro della barra in mm:

- τ_m il valor medio della tensione di aderenza in MPa calcolata in corrispondenza di uno scorrimento pari a 0,01, 0,1 ed 1 mm;
- τ_r la tensione di aderenza massima al collasso.

Le prove devono essere estese ad almeno tre diametri, come segue:

- uno nell'intervallo 5 ≤ Ø ≤ 10 mm;
- uno nell'intervallo 12 ≤ Ø ≤ 18 mm;
- uno pari al diametro massimo.

Per le verifiche periodiche della qualità e per le verifiche delle singole partite, non è richiesta la ripetizione delle prove di aderenza quando se ne possa determinare la rispondenza nei riguardi delle caratteristiche e delle misure geometriche, con riferimento alla serie di barre che hanno superato le prove stesse con esito positivo.

Con riferimento sia all'acciaio nervato che all'acciaio dentellato, per accertare la rispondenza delle singole partite nei riguardi delle proprietà di aderenza, si valuteranno per un numero significativo di barre, conformemente alle procedure riportate nella norma UNI EN ISO 15630-1:2004.

- il valore dell'area relativa di nervatura f_r, per l'acciaio nervato;
- il valore dell'area relativa di dentellatura f_p, per l'acciaio dentellato.

Il valore minimo di tali parametri, valutati come indicato, deve risultare compreso entro i limiti di seguito riportati:

```
    per 5 ≤ Ø ≤ 6 mm f<sub>r</sub> ovvero f<sub>p</sub> ≥ 0,035;
    per 6 < Ø ≤ 12 mm f<sub>r</sub> ovvero f<sub>p</sub> ≥ 0,040;
    per Ø > 12 mm f<sub>r</sub> ovvero f<sub>p</sub> ≥ 0,056.
```

Nel certificato di prova, oltre agli esiti delle verifiche di cui sopra, devono essere descritte le caratteristiche geometriche della sezione e delle nervature ovvero dentellature.

Procedure di controllo per acciai da cemento armato ordinario – reti e tralicci elettrosaldati

Controlli sistematici in stabilimento

Prove di qualificazione

Il laboratorio di cui all'art. 59 del DPR n. 380/2001 effettua, presso lo stabilimento di produzione, in almeno quattro sopralluoghi senza preavviso il prelievo di una serie di 80 saggi, ricavati da 40 diversi pannelli, 2 per ogni elemento.

Ogni saggio deve consentire due prove:

- prova di trazione su uno spezzone di filo comprendente almeno un nodo saldato, per la determinazione della tensione di rottura, della tensione di snervamento e dell'allungamento;
- prova di resistenza al distacco offerta dalla saldatura del nodo, determinata forzando con idoneo dispositivo il filo trasversale nella direzione di quello maggiore posto in trazione.

Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Per la determinazione delle tensioni caratteristiche di snervamento e rottura, determinate in accordo con il § 11.3.2.3, valgono le medesime formule di cui al § 11.3.2.11.1 dove n, numero dei saggi considerati, va assunto nel presente caso pari a 80, ed il coefficiente k assume, in funzione di n, i valori riportati nelle tabelle di cui al § 11.3.2.11.1.

Qualora uno dei campioni sottoposti a prove di qualificazione non soddisfi i requisiti previsti nelle norme tecniche relativamente ai valori di all'ungamento o resistenza al distacco, il prelievo relativo all'elemento di cui trattasi va ripetuto su un altro elemento della stessa partita. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta la ripetizione delle prove di qualificazione.

Prove di verifica della qualità

Il laboratorio incaricato deve effettuare controlli saltuari ad intervalli non superiori a tre mesi, su serie di 20 saggi, ricavati da 10 diversi elementi, 2 per ogni elemento. Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Sulla serie il laboratorio effettua la prova di trazione e di distacco. I corrispondenti risultati vengono aggiunti a quelli dei precedenti prelievi dopo aver eliminato la prima serie in ordine di tempo.

Si determinano così le nuove tensioni caratteristiche sostitutive delle precedenti sempre ponendo n = 20.

Ove i valori caratteristici riscontrati risultino inferiori ai minimi di cui ai §§ 11.3.2.1 e 11.3.2.2 il laboratorio incaricato sospende le verifiche della qualità dandone comunicazione al Servizio Tecnico Centrale e ripete la qualificazione solo dopo che il produttore ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Qualora uno dei campioni sottoposti a prove di verifica non soddisfi i valori previsti al § 11.3.2, il prelievo relativo all'elemento di cui trattasi va ripetuto su un altro elemento della stessa partita. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. In caso di ulteriore risultato negativo, il laboratorio incaricato sospende le verifiche della qualità dandone comunicazione al Servizio Tecnico Centrale e ripete la qualificazione dopo che il produttore ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Controlli su singoli lotti di produzione.

Negli stabilimenti soggetti ai controlli sistematici, i produttori qualificati possono sottoporre a controlli singoli lotti di produzione a cura del laboratorio incaricato.

I controlli consistono nel prelievo per ogni lotto di un numero n di saggi, non inferiore a venti e ricavati da almeno dieci diversi elementi, sui quali si effettuano le prove previste al § 11.3.2.11.1.

Le tensioni caratteristiche di snervamento e rottura vengono calcolate a mezzo delle formule di cui al § 11.3.2.11.1 nelle quali n è il numero dei saggi prelevati.

Controlli di accettazione in cantiere.

I controlli sono obbligatori e devono essere effettuati su tre saggi ricavati da tre diversi pannelli, nell'ambito di ciascun lotto di spedizione.

Qualora uno dei campioni sottoposti a prove di accettazione non soddisfi i requisiti previsti nelle norme tecniche relativamente ai valori di snervamento, resistenza a trazione del filo, allungamento, rottura e resistenza al distacco, il prelievo relativo all'elemento di cui trattasi va ripetuto su un altro elemento della stessa partita. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta il prelievo di nuovi saggi secondo la procedura di cui al § 11.3.2.11.4.

LEGNO LAMELLARE GL24h secondo EN 1194

Resistenza a flessione fm,g,k = 24 N/mm² Resistenza a trazione ft,0,g,k = 19.2 N/mm² ft,90,g,k = 0.5 N/mm² Resistenza a compressione fc,0,g,k = 24 N/mm² fc,90,g,k = 2.5 N/mm² Resistenza a taglio fv,g,k = 3.5 N/mm² Modulo elastico E0,g,mean =11500 N/mm² E0,g,05 =9600 N/mm² E90,g,mean = 300 N/mm² Modulo di taglio Gg,mean = 6500 N/mm² Massa volumica ρ g.k= 385 kg/m³

MATERIALI E PRODOTTI A BASE DI LEGNO

GENERALITÀ

Le prescrizioni contenute in questo paragrafo si applicano al legno massiccio ed ai prodotti a base di legno per usi strutturali.

A seconda dei tipi di prodotti, ai materiali e prodotti a base di legno per uso strutturale si applicano, i punti punto A oppure C del § 11.1.

Negli altri casi si applicano, al produttore e al fornitore per quanto di sua competenza, le prescrizioni di cui al § 11.7.10.

I produttori di sistemi strutturali con struttura in legno, per i quali siano già disponibili Linee Guida ETAG, dovranno adeguarsi a quanto prescritto al punto C del § 11.1.

La produzione, fornitura e utilizzazione dei prodotti di legno e dei prodotti a base di legno per uso strutturale dovranno avvenire in applicazione di un sistema di assicurazione della qualità e di un sistema di rintracciabilità che copra la catena di distribuzione dal momento della prima classificazione e marcatura dei singoli componenti e/o semilavorati almeno fino al momento della prima messa in opera.

Oltre che dalla documentazione indicata al pertinente punto del §11.1, ovvero nel § 11.7.10, ogni fornitura deve essere accompagnata, a cura del produttore, da un manuale contenente le specifiche tecniche per la posa in opera. Il Direttore dei Lavori è tenuto a rifiutare le eventuali forniture non conformi a quanto sopra prescritto.

Il progettista sarà tenuto ad indicare nel progetto le caratteristiche dei materiali secondo le indicazioni di cui al presente capitolo.

Tali caratteristiche devono essere garantite dai fornitori e/o produttori, per ciascuna fornitura, secondo le disposizioni applicabili di cui alla marcatura CE ovvero di cui al § 11.7.10.

Il Direttore dei Lavori potrà inoltre far eseguire ulteriori prove di accettazione sul materiale pervenuto in cantiere e sui collegamenti, secondo le metodologie di prova indicate nella presente

Sono abilitati ad effettuare le prove ed i controlli, sia sui prodotti che sui cicli produttivi, i laboratori di cui all'art. 59 del DPR n. 380/2001 e gli organismi di prova abilitati ai sensi del DPR n. 246/93 in materia di prove e controlli sul legno.

Proprietà dei materiali

Si definiscono valori caratteristici di resistenza di un tipo di legno i valori del frattile 5% della distribuzione delle resistenze, ottenuti sulla base dei risultati di prove sperimentali effettuate con una durata di 300 secondi su provini all'umidità di equilibrio del legno corrispondente alla temperatura di 20 ±2°C ed umidità relativa dell'aria del 65 ± 5 %.

Per il modulo elastico, si fa riferimento sia ai valori caratteristici di modulo elastico corrispondenti al frattile 5% sia ai valori medi, ottenuti nelle stesse condizioni di prova sopra specificate.

Si definisce massa volumica caratteristica il valore del frattile 5% della relativa distribuzione con massa e volume misurati in condizioni di umidità di equilibrio del legno alla temperatura di 20 $\pm 2^{\circ}$ C ed umidità relativa dell'aria del 65 \pm 5 %..

Il progetto e la verifica di strutture realizzate con legno massiccio, lamellare o con prodotti per uso strutturale derivati dal legno, richiedono la conoscenza dei valori di resistenza, modulo elastico e massa volumica costituenti il profilo resistente, che deve comprendere almeno quanto riportato nella Tab. 11.7 I.

Tabella 11.7.I

Proprietà di resiste	nza	Proprietà di modulo el	Proprietà di modulo elastico		
Flessione	$\mathbf{f}_{m,k}$	Modulo elastico parallelo medio **	E _{0,moss}	Massa volumica caratteristica	Pk
Trazione parallela	$\mathbf{f}_{i,0,k}$	Modulo elastico parallelo caratteristico	E _{0,05}	Massa volumica media *,**	Pman
Trazione perpendicolare	$\mathbf{f}_{i,90,k}$	Modulo elastico perpendicolare medio **	E _{90,mean}		
Compressione parallela	$\mathbf{f}_{c,0,k}$	Modulo elastico tangenziale medio **	G _{mean}		
Compressione perpendicolare	$f_{c,90,k}$	3			
Taglio	$f_{r,k}$				8

La massa volumica media può non essere dichiarata.

I valori indicati nei profili resistenti possono essere introdotti nei calcoli come valori massimi per le grandezze cui si riferiscono.

Per il legno massiccio, i valori caratteristici di resistenza, desunti da indagini sperimentali, sono riferiti a dimensioni standardizzate del secondo le norme pertinenti. In particolare, per la determinazione della resistenza a flessione l'altezza della sezione trasversale del campione di prova è pari a 150 mm, mentre per la determinazione della resistenza a trazione parallela alla fibratura, il lato maggiore della sezione trasversale del campione di prova è pari a 150 mm.

Pertanto, per elementi di legno massiccio sottoposti a flessione o a trazione parallela alla fibratura che presentino rispettivamente una altezza o il lato maggiore della sezione trasversale inferiore a 150 mm, i valori caratteristici f_{m.k} e f_{t.0.k}, indicati nei profili resistenti, possono essere incrementati tramite il coefficiente moltiplicativo k_h, così definito:

$$k_h = \min\left\{ \left(\frac{150}{h}\right)^{0,2}; 1,3 \right\}$$
 (11.7.1)

essendo h, in millimetri, l'altezza della sezione trasversale dell'elemento inflesso oppure il lato maggiore della sezione trasversale dell'elemento sottoposto a trazione.

Per il legno lamellare incollato i valori caratteristici di resistenza, desunti da indagini sperimentali, sono riferiti a dimensioni standardizzate del campione di prova secondo le norme pertinenti. In particolare, per la determinazione della resistenza a flessione l'altezza della sezione trasversale del campione di prova è pari a 600 mm, mentre per la determinazione della resistenza a trazione parallela alla fibratura, il lato maggiore della sezione trasversale del provino è pari a 600 mm.

Di conseguenza, per elementi di legno lamellare sottoposti a flessione o a trazione parallela alla fibratura che presentino rispettivamente una altezza o il lato maggiore della sezione trasversale inferiore a 600 mm, i valori caratteristici $f_{m,k}$ e $f_{t,0,k}$, indicati nei profili resistenti, possono essere incrementati tramite il coefficiente moltiplicativo k_h , così definito:

$$k_{\rm h} = \min\left\{ \left(\frac{600}{h}\right)^{0,1}; 1,1 \right\} \tag{11.7.2}$$

essendo h, in millimetri, l'altezza della sezione trasversale dell'elemento inflesso oppure il lato maggiore della sezione trasversale dell'elemento sottoposto a trazione.

^{**} Il pedice mean può essere abbreviato con m

LEGNO LAMELLARE INCOLLATO

Requisiti di produzione e qualificazione

Gli elementi strutturali di legno lamellare incollato debbono essere conformi alla norma europea armonizzata UNI EN 14080.

I produttori di elementi di legno lamellare per uso strutturale, per cui non è ancora obbligatoria la procedura della marcatura CE ai sensi del DPR 246/93, per i quali si applica il caso B di cui al §11.1, devono essere qualificati così come specificato al § 11.7.10, cui si deve aggiungere quanto segue.

Il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con le norme UNI EN ISO 9001:2000 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021:2006.

Ai fini della certificazione del sistema di garanzia della qualità del processo produttivo, il produttore e l'organismo di certificazione di processo potranno fare utile riferimento alle indicazioni contenute nelle relative norme europee od internazionali applicabili.

I documenti che accompagnano ogni fornitura devono indicare gli estremi della certificazione del sistema di gestione della qualità del processo produttivo.

Ai produttori di elementi in legno lamellare è fatto altresi obbligo di:

- a) Sottoporre la produzione, presso i propri stabilimenti, ad un controllo continuo documentato condotto sulla base della norma UNI EN 386:2003. Il controllo della produzione deve essere effettuato a cura del Direttore Tecnico di stabilimento, che deve provvedere alla trascrizione dei risultati delle prove su appositi registri di produzione. Detti registri devono essere disponibili al Servizio Tecnico Centrale e, limitatamente alla fornitura di competenza, per il Direttore dei Lavori e il collaudatore della costruzione.
- b) Nella marchiatura dell'elemento, oltre a quanto già specificato nel § 11.7.10.1, deve essere riportato anche l'anno di produzione.

Le dimensioni delle singole lamelle dovranno rispettare i limiti per lo spessore e l'area della sezione trasversale indicati nella norma UNI EN 386:2003.

I giunti a dita "a tutta sezione" devono essere conformi a quanto previsto nella norma UNI EN 387:2003.

I giunti a dita "a tutta sezione" non possono essere usati per elementi strutturali da porre in opera nella classe di servizio 3, quando la direzione della fibratura cambi in corrispondenza del giunto.

Classi di resistenza

L'attribuzione degli elementi strutturali di legno lamellare ad una classe di resistenza viene effettuata dal produttore secondo quanto previsto ai punti seguenti.

Classificazione sulla base delle proprietà delle lamelle

Le singole lamelle vanno tutte individualmente classificate dal produttore come previsto al § 11.7.2.

L'elemento strutturale di legno lamellare incollato può essere costituito dall'insieme di lamelle tra loro omogenee (elemento "omogeneo") oppure da lamelle di diversa qualità (elemento "combinato") secondo quanto previsto nella norma UNI EN 1194:2000.

Nella citata norma viene indicata la corrispondenza tra le classi delle lamelle che compongono l'elemento strutturale e la classe di resistenza risultante per l'elemento lamellare stesso, sia omogeneo che combinato.

Attribuzione diretta in base a prove sperimentali

Nei casi in cui il legno lamellare incollato non ricada in una delle tipologie previste dalla UNI EN 1194:2000, è ammessa l'attribuzione diretta degli elementi strutturali lamellari alle classi di resistenza sulla base di risultati di prove sperimentali, da eseguirsi in conformità alla norma europea armonizzata UNI EN 14080.

ELEMENTI MECCANICI DI COLLEGAMENTO

Per tutti gli elementi metallici che fanno parte di particolari di collegamento (metallici e non metallici, quali spinotti, chiodi, viti, piastre, ecc...) le caratteristiche specifiche verranno verificate con riferimento alle specifiche normative applicabili per la categoria di appartenenza.

DURABILITÀ DEL LEGNO E DERIVATI

Generalità

La durabilità delle opere realizzate con prodotti in legno strutturali è ottenibile mediante un'accurata progettazione dei dettagli esecutivi.

Al fine di garantire alla struttura adeguata durabilità, si devono considerare i seguenti fattori tra loro correlati:

- La destinazione d'uso della struttura;
- le condizioni ambientali prevedibili;
- la composizione, le proprietà e le prestazioni dei materiali;
- la forma degli elementi strutturali ed i particolari costruttivi;
- la qualità dell'esecuzione ed il livello di controllo della stessa;
- le particolari misure di protezione;
- la probabile manutenzione durante la vita presunta.

adottando in fase di progetto idonei provvedimenti volti alla protezione dei materiali.

Requisiti di durabilità naturale dei materiali a base di legno

Il legno ed i materiali a base di legno devono possedere un'adeguata durabilità naturale per la classe di rischio prevista in servizio, oppure devono essere sottoposti ad un trattamento preservante adeguato.

Per i prodotti in legno massiccio, una guida alla durabilità naturale e trattabilità delle varie specie legnose è contenuta nella norma UNI EN 350:1996 parti 1 e 2, mentre una guida ai requisiti di durabilità naturale per legno da utilizzare nelle classi di rischio è contenuta nella norma UNI EN 460:1996.

Le definizioni delle classi di rischio di attacco biologico e la metodologia decisionale per la selezione del legno massiccio e dei pannelli a base di legno appropriati alla classe di rischio sono contenute nelle norme UNI EN 335-1: 2006, UNI EN 335-2: 2006 e UNI EN 335-3: 1998.

La classificazione di penetrazione e ritenzione dei preservanti è contenuta nelle norme UNI EN 351:1998 (Parte 1 e 2).

Le specifiche relative alle prestazioni dei preservanti per legno ed alla loro classificazione ed etichettatura sono indicate nelle UNI EN 599-1:1999 e UNI EN 599-2:1998.

Resistenza alla corrosione

I mezzi di unione metallici strutturali devono, di regola, essere intrinsecamente resistenti alla corrosione, oppure devono essere protetti contro la corrosione.

L'efficacia della protezione alla corrosione dovrà essere commisurata alle esigenze proprie della Classe di Servizio in cui opera la struttura.

PROCEDURE DI QUALIFICAZIONE E ACCETTAZIONE

Le caratteristiche dei materiali, indicate nel progetto secondo le prescrizioni di cui ai precedenti paragrafi o secondo eventuali altre prescrizioni in funzione della specifica opera, devono essere garantite dai fornitori e/o produttori, per ciascuna fornitura, secondo le disposizioni che seguono.

Disposizioni generali

Qualora non sia applicabile la procedura di marcatura CE (di cui ai punti A e C del §11.1), per tutti i prodotti a base di legno per impieghi strutturali valgono integralmente, per quanto applicabili, le seguenti disposizioni che sono da intendersi integrative di quanto specificato al punto B del § 11.1. Per l'obbligatoria qualificazione della produzione, i fabbricanti di prodotti in legno strutturale devono produrre al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, per ciascun stabilimento, la documentazione seguente:

- l'individuazione dello stabilimento cui l'istanza si riferisce;
- il tipo di elementi strutturali che l'azienda è in grado di produrre;
- l'organizzazione del sistema di rintracciabilità relativo alla produzione di legno strutturale;
- l'organizzazione del controllo interno di produzione, con l'individuazione di un "Direttore Tecnico della produzione" qualificato alla classificazione del legno strutturale ed all'incollaggio degli elementi ove pertinente;
- il marchio afferente al produttore specifico per la classe di prodotti "elementi di legno per uso strutturale".

Il Direttore Tecnico della produzione, di comprovata esperienza e dotato di abilitazione professionale tramite apposito corso di formazione, assumerà le responsabilità relative alla rispondenza tra quanto prodotto e la documentazione depositata.

I produttori sono tenuti ad inviare al Servizio Tecnico Centrale, ogni anno, i seguenti documenti:

- a) una dichiarazione attestante la permanenza delle condizioni iniziali di idoneità della organizzazione del controllo interno di qualità o le eventuali modifiche;
- i risultati dei controlli interni eseguiti nell'ultimo anno, per ciascun tipo di prodotto, da cui risulti anche il quantitativo di produzione.

Il mancato rispetto delle condizioni sopra indicate, accertato anche attraverso sopralluoghi, può comportare la decadenza della qualificazione.

Tutte le forniture di elementi in legno per uso strutturale devono riportare il marchio del produttore e essere accompagnate da una documentazione relativa alle caratteristiche tecniche del prodotto.

Identificazione e rintracciabilità dei prodotti qualificati

Tenuto conto di quanto riportato al § precedente, ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marchiatura indelebile depositata presso il Servizio Tecnico Centrale, conforme alla relativa norma armonizzata.

Ogni prodotto deve essere marchiato con identificativi diversi da quelli di prodotti aventi differenti caratteristiche, ma fabbricati nello stesso stabilimento e con identificativi differenti da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso produttore. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva a se stante, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso produttore, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato. Considerata la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in lotti, differenti possono essere i sistemi di marchiatura adottati, anche in relazione alla destinazione d'uso.

Comunque, per quanto possibile, anche in relazione alla destinazione d'uso del prodotto, il produttore é tenuto a marchiare ogni singolo pezzo. Ove ciò non sia possibile, per la specifica tipologia del prodotto, la marchiatura deve essere tale che prima dell'apertura dell'eventuale ultima e più piccola confezione il prodotto sia riconducibile al produttore, al tipo di legname nonché al lotto di classificazione e alla data di classificazione.

Tenendo presente che l'elemento determinante della marchiatura è costituito dalla sua inalterabilità nel tempo, e dalla impossibilità di manomissione, il produttore deve rispettare le modalità di marchiatura denunciate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

Qualora, sia presso gli utilizzatori, sia presso i commercianti, l'unità marchiata (pezzo singolo o lotto) viene scorporata, per cui una parte, o il tutto, perde l'originale marchiatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

I produttori, i successivi intermediari e gli utilizzatori finali devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni e devono mantenere evidenti le marchiature o etichette di riconoscimento per la rintracciabilità del prodotto.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio potranno essere emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Forniture e documentazione di accompagnamento

Tutte le forniture di legno strutturale devono essere accompagnate da una copia dell'attestato di qualificazione del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

L'attestato può essere utilizzato senza limitazione di tempo, finché permane la validità della qualificazione e vengono rispettate le prescrizioni periodiche di cui al § 11.7.10.1.

Sulla copia dell'attestato deve essere riportato il riferimento al documento di trasporto.

Le forniture effettuate da un commerciante o da un trasformatore intermedio devono essere accompagnate da copia dei documenti rilasciati dal Produttore e completati con il riferimento al documento di trasporto del commerciante o trasformatore intermedio.

Il Direttore dei Lavori prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi.

Prodotti provenienti dall'estero

Gli adempimenti di cui al § 11.7.10 si applicano anche ai prodotti finiti provenienti dall'estero e non dotati di marcatura CE.

Nel caso in cui tali prodotti, non soggetti o non recanti la marcatura CE, siano comunque provvisti di una certificazione di idoneità tecnica riconosciuta dalle rispettive Autorità estere competenti, il produttore potrà, in alternativa a quanto previsto al § 11.7.10.1, inoltrare al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici domanda intesa ad ottenere il riconoscimento dell'equivalenza della procedura adottata nel Paese di origine depositando contestualmente la relativa documentazione per i prodotti da fornire con il corrispondente marchio. Tale equivalenza è sancita con decreto del Presidente del Consiglio Superiore dei Lavori Pubblici.

4. ELABORATI GRAFICI ESECUTIVI E PARTICOLARI COSTRUTTIVI

4.1. ELABORATI GRAFICI GENERALI

Si rimanda agli elaborati grafici strutturali.

4.2. PARTICOLARI COSTRUTTIVI

Si rimanda agli elaborati grafici strutturali.

5. PIANO DI MANUTENZIONE DELLA PARTE STRUTTURALE DEI L'OPERA

PREMESSA:

Il piano di manutenzione è il documento complementare al progetto esecutivo che prevede, pianifica e programma, tenendo conto degli elaborati progettuali esecutivi effettivamente realizzati, l'attività di manutenzione dell'intervento al fine di mantenere nel tempo la funzionalità, le caratteristiche di qualità, l'efficienza ed il valore economico. Il piano di manutenzione è costituito dai seguenti documenti operativi:

- · il manuale d'uso:
- · il manuale di manutenzione comprensivo del programma di manutenzione.

DESCRIZIONE DELL'OPERA:

L'opera è un edificio di nuova costruzione, sito in , (prov. di). Tipologia costruttiva: è un edificio di un solo piano con struttura a telaio in c.a. Destinazione d'uso:

MANUALE D'USO:

Il manuale d'uso si riferisce all'uso delle parti più importanti dell'opera, con particolare riferimento alle parti che possono generare rischi per un uso scorretto. Il manuale d'uso contiene informazioni sulla collocazione delle parti interessate nell'intervento, la loro rappresentazione grafica, descrizione e modalità di uso corretto.

Struttura n. 1 - Travi di fondazione

Descrizione:

Strutture di fondazione organizzate in grigliati di travi poste a diretto contatto con il terreno.

Collocazione:

Vedi tavole disegni esecutivi

Rappresentazione grafica:

Vedi tavole particolari costruttivi

Modalità d'uso corretto:

Trasferimento delle sollecitazioni statiche e sismiche della struttura al terreno, entro i limiti di pressioni e cedimenti imposti dal progetto.

Struttura n. 2 - Platee di fondazione

Descrizione:

Strutture di fondazione.

Collocazione:

Vedi tavole disegni esecutivi

Rappresentazione grafica:

Vedi tavole particolari costruttivi

Modalità d'uso corretto:

Trasferimento delle sollecitazioni statiche e sismiche della struttura al terreno, entro i limiti di pressioni e cedimenti imposti dal progetto.

MANUALE DI MANUTENZIONE:

Il manuale di manutenzione si riferisce alla manutenzione delle parti più importanti dell'intervento. Esso contiene il livello minimo accettabile delle prestazioni, le anomalie riscontrabili, le manutenzioni eseguibili direttamente dall'utente e quelle che non lo sono.

Il programma di manutenzione fissa delle manutenzioni e dei controlli da eseguire in seguito a scadenze preventivamente fissate.

Struttura n. 1 - Travi di fondazione

Collocazione:

Vedi tavole disegni esecutivi

Rappresentazione grafica:

Vedi tavole particolari costruttivi

Livello minimo delle prestazioni:

Resistenza alle sollecitazioni di progetto. Realizzazione con materiali con caratteristiche definite dalle prescrizioni di progetto.

Anomalie riscontrabili:

Cedimenti, lesioni alla sovrastruttura, causati da mutamenti delle condizioni del terreno dovuti a cause quali: variazione della falda freatica, rottura di fognature o condutture idriche in prossimità della fondazione, ecc.

Tipo di controllo:

Controllo a vista

Periodicità dei controlli e operatore:

Ogni anno, effettuato dall'utente

Tipo di intervento:

Opere di consolidamento del terreno o della struttura da decidersi dopo indagini specifiche.

Periodicità degli interventi e operatore:

Quando necessario, effettuato da personale specializzato

Struttura n. 2 - Platee di fondazione

Collocazione:

Vedi tavole disegni esecutivi

Rappresentazione grafica:

Vedi tavole particolari costruttivi

Livello minimo delle prestazioni:

Resistenza alle sollecitazioni di progetto. Realizzazione con materiali con caratteristiche definite dalle prescrizioni di progetto.

Anomalie riscontrabili:

Cedimenti, lesioni alla sovrastruttura, causati da mutamenti delle condizioni del terreno dovuti a cause quali: variazione della falda freatica, rottura di fognature o condutture idriche in prossimità della fondazione, ecc.

Tipo di controllo:

Controllo a vista

Periodicità dei controlli e operatore:

Ogni anno, effettuato dall'utente

Tipo di intervento:

Opere di consolidamento del terreno o della struttura da decidersi dopo indagini specifiche.

Periodicità degli interventi e operatore:

Quando necessario, effettuato da personale specializzato

6. RELAZIONE SUI RISULTATI SPERIMENTALI: INDAGINI **SPECIALISTICHE**

6.1. RELAZIONE GEOLOGICA: INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE **GEOLOGICA DEL SITO**

Si rimanda alla relazione geologica allegata al progetto, a firma del Dott. Geol. Pier Luigi Dallari.

6.2. RELAZIONE GEOTECNICA: INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE DEL **VOLUME SIGNIFICATIVO DI TERRENO**

CARICO LIMITE DI FONDAZIONI SUPERFICIALI SU TERRENI

Per la determinazione del carico limite del complesso terreno-fondazione (inteso come valore asintotico del diagramma carico-cedimento) si fa riferimento a due principali meccanismi di rottura: il "meccanismo generale" e quello di "punzonamento". Il primo è caratterizzato dalla formazione di una superficie di scorrimento: il terreno sottostante la fondazione rifluisce lateralmente e verso l'alto, conseguentemente il terreno circostante la fondazione è interessato da un meccanismo di sollevamento ed emersione della superficie di scorrimento. Il secondo meccanismo è caratterizzato dall'assenza di una superficie di scorrimento ben definita: il terreno sotto la fondazione si comprime ed in corrispondenza della superficie del terreno circostante la fondazione si osserva un abbassamento generalizzato. Quest'ultimo meccanismo non consente una precisa individuazione del carico limite in quanto la curva cedimenticarico applicato non raggiunge mai un valore asintotico ma cresce indefinitamente. Vesic ha studiato il fenomeno della rottura per punzonamento assimilando il terreno ad un mezzo elasto-plastico e la rottura per carico limite all'espansione di una cavità cilindrica. In questo caso il fenomeno risulta retto da un indice di rigidezza "I_r" così defi-

$$I_r = \frac{G}{c' + \sigma' \cdot tg(\varphi)}.$$

Per la determinazione del modulo di rigidezza a taglio si utilizzeranno le seguenti relazioni:

$$G = \frac{E}{2 \cdot (1 + \nu)}; \qquad E = E_{ed} \frac{1 - \nu - 2 \cdot \nu^2}{1 - \nu}; \qquad \nu = \frac{k_0}{1 + k_0}; \qquad k_0 = 1 - sen(\varphi).$$

L'indice di rigidezza viene confrontato con l'indice di rigidezza critico "
$$I_{r,crit}$$
":
$$I_{r,crit} = \frac{e^{\left[\left(3.3-0.45\frac{B}{L}\right)ctg\left(45^\circ\frac{\varphi}{2}\right)\right]}}{2}$$

La rottura per punzonamento del terreno di fondazione avviene quando l'indice di rigidezza è minore di quello critico. Tale teoria comporta l'introduzione di coefficienti correttivi all'interno della formula trinomia del carico limite detti "coefficienti di punzonamento" i quali sono funzione dell'indice di rigidezza, dell'angolo d'attrito e della geometria dell'elemento di fondazione. La loro espressione è la seguente:

- se
$$I_r < I_{r,crit}$$
 si ha :
$$\Psi_{\gamma} = \Psi_q = e^{\left[\left(0.6\frac{B}{L} - 4.4\right)tg(\varphi) + \frac{3.07 \cdot sen(\varphi)\log_{10}(2 \cdot I_r)}{1 + sen(\varphi)}\right]} \qquad \text{se } \varphi = 0 \Rightarrow \Psi_{\gamma} = \Psi_q = 1$$

$$\Psi_c = \Psi_q - \frac{1 - \Psi_q}{N_c \cdot tg(\varphi)} \qquad \text{se } \varphi = 0 \Rightarrow \Psi_c = 0.32 + 0.12 \cdot \frac{B}{L} + 0.6 \cdot \log_{10}(I_r)$$
 - se $I_r > I_{r,crit}$ si ha che $\Psi_{\gamma} = \Psi_q = \Psi_c = 1$.

Il significato dei simboli adottati nelle equazioni sopra riportate è il seguente:

- E_{ed} modulo edometrico del terreno sottostante la fondazione
- coefficiente di Poisson del terreno sottostante la fondazione
- coefficiente di spinta a riposo del terreno sottostante la fondazione
- angolo d'attrito efficace del terreno sottostante il piano di posa
- Ċ' coesione (espressa in termini di tensioni efficaci)
- tensione litostatica effettiva a profondità D+B/2

- L luce delle singole travi di fondazione
- D profondità del piano di posa della fondazione a partire dal piano campagna
- В larghezza della trave di fondazione

Definito il meccanismo di rottura, il calcolo del carico limite viene eseguito modellando il terreno come un mezzo rigido perfettamente plastico con la seguente espressione:

$$q_{ult} = \gamma_1 \cdot D \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot \Psi_q + c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot \Psi_c + \gamma_2 \cdot \frac{B}{2} \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot \Psi_\gamma \cdot r_\gamma.$$

Il significato dei termini presenti nella relazione trinomia sopra riportata è il seguente:

- N_o, N_c, N_v, fattori adimensionali di portanza funzione dell'angolo d'attrito interno φ del terreno
- $s_{\text{q}},\,s_{\text{c}},\,s_{\gamma},\,\,\,$ coefficienti che rappresentano il fattore di forma
- d_q , d_c , d_γ , coefficienti che rappresentano il fattore dell'approfondimento
- coefficienti che rappresentano il fattore di inclinazione del carico
- peso per unità di volume del terreno sovrastante il piano di posa
- peso per unità di volume del terreno sottostante il piano di posa

Per fondazioni aventi larghezza modesta si dimostra che il terzo termine non aumenta indefinitamente e per valori elevati di "B", sia secondo Vesic che secondo de Beer, il valore limite è prossimo a quello di una fondazione profonda. Bowles per fondazioni di larghezza maggiore di 2.00 metri propone il seguente fattore riduttivo:

$$r_{\gamma} = 1 - 0.25 \cdot \log_{10} \left(\frac{B}{2} \right)$$
 dove "B" va espresso in metri.

Questa relazione risulta particolarmente utile per fondazioni larghe con rapporto D/B basso (platee e simili), caso nel quale il terzo termine dell'equazione trinomia è predominante.

Nel caso di carico eccentrico Meyerhof consiglia di ridurre le dimensioni della superficie di contatto (A_i) tra fondazione e terreno (B, L) in tutte le formule del calcolo del carico limite. Tale riduzione è espressa dalle sequenti relazioni:

$$B_{rid} = B - 2 \cdot e_B$$
 $L_{rid} = L - 2 \cdot e_L$ dove e_B, e_L sono le eccentricità relative alle dimensioni in esame.

L'equazione trinomia del carico limite può essere risolta secondo varie formulazioni, di seguito si riportano quelle che sono state implementate:

Formulazione di Hansen (1970)

$$N_{q} = tg^{2}\left(\frac{90^{\circ} + \varphi}{2}\right) \cdot e^{\pi \cdot tg(\varphi)}$$

$$N_{\gamma} = 1.5 \cdot \left(N_{q} - 1\right) \cdot tg(\varphi) \quad N_{c} = (N_{q} - 1) \cdot ctg(\varphi)$$
- se $\varphi \neq 0$ si ha:
$$s_{q} = 1 + \frac{B}{L} \cdot tg(\varphi) \qquad s_{\gamma} = 1 - 0.4 \cdot \frac{B}{L} \quad s_{c} = 1 + \frac{N_{q} \cdot B}{N_{c} \cdot L}$$

$$d_{q} = 1 + 2 \cdot tg(\varphi) \cdot (1 - sen(\varphi))^{2} \cdot \Theta \quad d_{\gamma} = 1.0 \qquad d_{c} = 1 + 0.4 \cdot \Theta$$

$$dove : se \frac{D}{B} \leq 1 \Rightarrow \Theta = \frac{D}{B}, \text{ se } \frac{D}{B} > 1 \Rightarrow \Theta = arctg\left(\frac{D}{B}\right)$$

$$i_q = \left[1 - \frac{0.5 \cdot H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^{\alpha_1} \qquad i_\gamma = \left[1 - \frac{0.7 \cdot H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^{\alpha_2} \qquad i_c = i_q - \frac{1 - i_q}{N_q - 1}$$

$$\begin{aligned} s_q &= 1.0 \ \, s_\gamma = 1.0 \ \, s_c = 1 + 0.2 \cdot \frac{B}{L} \\ d_q &= 1.0 \qquad \qquad d_\gamma = 1.0 \qquad \qquad d_c = 1 + 0.4 \cdot \Theta \\ i_q &= 1.0 \ \, i_\gamma = 1.0 \quad i_c = 0.5 \cdot \left(1 + \sqrt{1 - \frac{H}{A_f \cdot c_a}}\right) \end{aligned}$$

Formulazione di Vesic (1975

$$N_{q} = tg^{2} \left(\frac{90^{\circ} + \varphi}{2}\right) \cdot e^{\pi \cdot tg(\varphi)}$$

$$N_{\gamma} = 2 \cdot \left(N_{q} + 1\right) \cdot tg(\varphi) \qquad N_{c} = (N_{q} - 1) \cdot ctg(\varphi)$$
se $\omega \neq 0$ si ha:

- se $\varphi \neq 0$ si ha:

$$\begin{split} s_q &= 1 + \frac{B}{L} \cdot tg(\varphi) & s_\gamma &= 1 - 0.4 \cdot \frac{B}{L} \quad s_c &= 1 + \frac{N_q \cdot B}{N_c \cdot L} \\ d_q &= 1 + 2 \cdot tg(\varphi) \cdot (1 - sen(\varphi))^2 \cdot \Theta \quad d_\gamma &= 1.0 \qquad d_c &= 1 + 0.4 \cdot \Theta \\ \text{dove} : \text{se } \frac{D}{B} \leq 1 \implies \Theta &= \frac{D}{B}, \text{ se } \frac{D}{B} > 1 \implies \Theta = arctg\left(\frac{D}{B}\right) \\ i_q &= \left[1 - \frac{H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^m \qquad i_\gamma &= \left[1 - \frac{H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^{m+1} \quad i_c = i_q - \frac{1 - i_q}{N_q - 1} \\ \text{dove} : m &= m_B = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \qquad m = m_L = \frac{2 + \frac{L}{B}}{1 + \frac{L}{L}} \end{split}$$

- se $\varphi = 0$ si ha:

$$\begin{split} s_q &= 1.0 \ \, s_\gamma = 1.0 \ \, s_c = 1 + 0.2 \cdot \frac{B}{L} \\ d_q &= 1.0 \qquad \qquad d_\gamma = 1.0 \qquad \qquad d_c = 1 + 0.4 \cdot \Theta \\ i_q &= 1.0 \quad i_\gamma = 1.0 \quad i_c = 1 - \frac{m \cdot H}{A_f \cdot c_a \cdot N_c} \end{split}$$

Formulazione di Brinch-Hansen

$$N_{q} = tg^{2}\left(\frac{90^{\circ} + \varphi}{2}\right) \cdot e^{\pi \cdot tg(\varphi)} \qquad N_{\gamma} = 2 \cdot \left(N_{q} + 1\right) \cdot tg(\varphi) \qquad N_{c} = (N_{q} - 1) \cdot ctg(\varphi)$$

$$- \operatorname{se} \varphi \neq 0 \operatorname{si} \operatorname{ha:}$$

$$s_{q} = 1 + 0.1 \cdot \frac{B \cdot (1 + sen(\varphi))}{L \cdot (1 - sen(\varphi))} \qquad s_{\gamma} = 1 + 0.1 \cdot \frac{B \cdot (1 + sen(\varphi))}{L \cdot (1 - sen(\varphi))} \qquad s_{c} = 1 + 0.2 \cdot \frac{B \cdot (1 + sen(\varphi))}{L \cdot (1 - sen(\varphi))}$$

$$d_{q} = 1 + 2 \cdot tg(\varphi) \cdot (1 - sen(\varphi))^{2} \cdot \Theta \qquad d_{\gamma} = 1.0 \qquad d_{c} = d_{q} - \frac{1 - d_{q}}{N_{c} \cdot tg(\varphi)}$$

$$\operatorname{dove:} \operatorname{se} \frac{D}{B} \leq 1 \Rightarrow \Theta = \frac{D}{B}, \operatorname{se} \frac{D}{B} > 1 \Rightarrow \Theta = \operatorname{arctg}\left(\frac{D}{B}\right)$$

$$i_{q} = \left[1 - \frac{H}{V + A_{f} \cdot c_{a} \cdot ctg(\varphi)}\right]^{m} \qquad i_{\gamma} = \left[1 - \frac{H}{V + A_{f} \cdot c_{a} \cdot ctg(\varphi)}\right]^{m+1} \quad i_{c} = i_{q} - \frac{1 - i_{q}}{N_{q} - 1}$$

$$\operatorname{dove:} m = m_{B} = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \qquad m = m_{L} = \frac{2 + \frac{L}{B}}{1 + \frac{L}{B}}$$

$$- \operatorname{se} \varphi = 0 \operatorname{si} \operatorname{ha:}$$

$$\begin{split} s_{q} &= 1.0 \ s_{\gamma} = 1.0 \ s_{c} = 1 + 0.2 \cdot \frac{B}{L} \\ d_{q} &= 1.0 \ d_{\gamma} = 1.0 \ d_{c} = 1 + 0.4 \cdot \Theta \\ i_{q} &= 1.0 \ i_{\gamma} = 1.0 \ i_{c} = 1 - \frac{m \cdot H}{A_{f} \cdot c_{a} \cdot N_{c}} \end{split}$$

Formulazione Eurocodice 7

$$N_{q} = tg^{2} \left(\frac{90^{\circ} + \varphi}{2}\right) \cdot e^{\pi \cdot tg(\varphi)}$$

$$N_{\gamma} = 2 \cdot \left(N_{q} - 1\right) \cdot tg(\varphi) \qquad N_{c} = (N_{q} - 1) \cdot ctg(\varphi)$$

$$s_{q} = 1 + \frac{B}{L} \cdot sen(\varphi) \qquad s_{\gamma} = 1 - 0.3 \cdot \frac{B}{L} \qquad s_{c} = \frac{s_{q} \cdot \left(N_{q} - 1\right)}{N_{q} - 1}$$

$$d_{q} = 1 + 2 \cdot tg(\varphi) \cdot (1 - sen(\varphi))^{2} \cdot \Theta \qquad d_{\gamma} = 1.0 \qquad d_{z} = 1 + 0.4 \cdot \Theta$$

dove: se
$$\frac{D}{B} \le 1 \implies \Theta = \frac{D}{B}$$
, se $\frac{D}{B} > 1 \implies \Theta = arctg\left(\frac{D}{B}\right)$

- se H è parallela al lato B si ha:

$$i_q = \left[1 - \frac{0.7 \cdot H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^3 \qquad i_\gamma = \left[1 - \frac{H}{V + A_f \cdot c_a \cdot ctg(\varphi)}\right]^3 \qquad i_c = \frac{i_q \cdot N_q - 1}{N_q - 1}$$

- se H è parallela al lato L si ha:

$$i_{q} = 1 - \frac{H}{V + A_{f} \cdot c_{a} \cdot ctg(\varphi)} \qquad i_{\gamma} = 1 - \frac{H}{V + A_{f} \cdot c_{a} \cdot ctg(\varphi)} \qquad i_{c} = \frac{i_{q} \cdot N_{q} - 1}{N_{q} - 1}$$

- se $\varphi = 0$ si ha:

$$\begin{split} s_q &= 1.0 \ \, s_{\gamma} = 1.0 \ \, s_c = 1 + 0.2 \cdot \frac{B}{L} \\ d_q &= 1.0 \qquad \qquad d_{\gamma} = 1.0 \qquad \qquad d_c = 1 + 0.4 \cdot \Theta \\ i_q &= 1.0 \quad i_{\gamma} = 1.0 \quad i_c = 0.5 \cdot \left(1 + \sqrt{1 - \frac{H}{A_f \cdot c_a}}\right) \end{split}$$

Si ricorda che per le relazioni sopra riportate nel caso in cui $\phi = 0 => N_q = 1.0$, $N_{\gamma} = 1.0$ e $N_c = 2 + \pi$. Il significato dei termini presenti nelle relazioni su descritte è il seguente:

- V componente verticale del carico agente sulla fondazione
- H componente orizzontale del carico agente sulla fondazione (sia lungo B che lungo L)
- c_a adesione fondazione-terreno (valore variabile tra il 60% e 100% della coesione)
- α_1 , α_2 esponenti di potenza che variano tra 2 e 5

Nel caso in cui il cuneo di fondazione sia interessato da falda idrica il valore di γ_2 nella formula trinomia assume la seguente espressione:

$$\gamma_2 = \frac{\gamma \cdot z + \gamma_{sat} \cdot (h_c - z)}{h_c}$$
 $h_c = \frac{B}{2} \cdot tg\left(\frac{90 + \varphi}{2}\right)$

dove i termini dell'espressione hanno il seguente significato:

- y peso per unità di volume del terreno sottostante il piano di posa
- γ_{sat} peso per unità di volume saturo del terreno sottostante il piano di posa
- z profondità della falda dal piano di posa
- h_c altezza del cuneo di rottura della fondazione

Tutto ciò che è stato detto sopra è valido nell'ipotesi di terreno con caratteristiche geotecniche omogenee. Nella realtà i terreni costituenti il piano di posa delle fondazioni sono quasi sempre composti, o comunque riconducibili, a formazioni di terreno omogenee di spessore variabile che si sovrappongono (caso di terreni stratificati). In queste condizioni i parametri vengono determinati con la seguente procedura:

- viene determinata l'altezza del cuneo di rottura in funzione delle caratteristiche geotecniche degli strati attraversati;
 quindi si determinato il numero degli strati interessati da esso
- in corrispondenza di ogni superficie di separazione, partendo da quella immediatamente sottostante il piano di posa della fondazione, fino a raggiungere l'altezza del cuneo di rottura, viene determinata la capacità portante di ogni singolo strato come somma di due valori: il primo dato dall'applicazione della formula trinomia alla quota iesima dello strato; il secondo dato dalla resistenza al punzonamento del terreno sovrastante lo strato in esame
- il minimo di questi due valori sarà assunto come valore massimo della capacità portante della fondazione stratificata

Si può formulare il procedimento anche in forma analitica:

$$\dot{q_{ult}} = \left[\ddot{q_{ult}} + q_{resT}\right]_{\min} = \left[\ddot{q_{ult}} + \frac{p}{A_f} \left(P_V \cdot K_s \cdot tg(\varphi) + d \cdot c\right)\right]_{\min}$$

dove i termini dell'espressione hanno il seguente significato:

- q"_{ult} carico limite per un'ipotetica fondazione posta alla quota dello strato interessato
- p perimetro della fondazione
- P_V spinta verticale del terreno dal piano di posa allo strato interessato
- K_S coefficiente di spinta laterale del terreno
- d distanza dal piano di posa allo strato interessato

CARICO LIMITE DI FONDAZIONI SUPERFICIALI SU ROCCIA

Per la determinazione del carico limite nel caso di presenza di ammasso roccioso bisogna valutare molto attentamente il grado di solidità della roccia stessa. Tale valutazione viene in genere eseguita stimando l'indice RQD (Rock Quality Designation) che rappresenta una misura della qualità di un ammasso roccioso. Tale indice può variare da un minimo di 0 (caso in cui la lunghezza dei pezzi di roccia estratti dal carotiere è inferiore a 100 mm) ad un massimo di 1 (caso in cui la carota risulta integra) ed è calcolato nel seguente modo:

$$RQD = \frac{\sum \text{lunghezze dei pezzi di roccia intatta} > 100 \text{mm}}{\text{lunghezza del carotiere}}.$$

Se il valore di RQD è molto basso la roccia è molto fratturata ed il calcolo della capacità portante dell'ammasso roccioso va condotto alla stregua di un terreno sciolto utilizzando tutte le formulazioni sopra descritte.

Per ricavare la capacità portante di rocce non assimilabili ad ammassi di terreno sciolto sono state implementate due formulazioni: quella di Terzaghi (1943) e quella di Stagg-Zienkiewicz (1968), entrambe correlate all'indice RQD. In definitiva il valore della capacità portante sarà espresso dalla seguente relazione:

$$q_{ult} = q_{ult} \cdot RQD^2$$

dove i termini dell'espressione hanno il seguente significato:

- q'_{ult} carico limite dell'ammasso roccioso
- q"ult carico limite calcolato alla Terzaghi o alla Stagg-Zienkiewicz

In questo caso l'equazione trinomia del carico limite assume la seguente forma:

$$\ddot{q_{ult}} = \gamma_1 \cdot D \cdot N_q + c \cdot N_c \cdot s_c + \gamma_2 \cdot \frac{B}{2} \cdot N_{\gamma} \cdot s_{\gamma}.$$

I termini presenti nell'equazione hanno lo stesso significato già visto in precedenza; i coefficienti di forma assumeranno i seguenti valori:

 $s_c=1.0$ per fondazioni di tipo nastriforme $s_c=1.3$ per fondazioni di tipo quadrato; $s_{\gamma}=1.0$ per fondazioni di tipo nastriforme $s_{\gamma}=0.8$ per fondazioni di tipo quadrato.

I fattori adimensionali di portanza a seconda della formulazione adottata saranno:

Formulazione di Terzaghi (1943)

$$N_{q} = \frac{e^{2\left(0.75 \cdot \pi - \frac{\varphi}{2}\right) \cdot tg(\varphi)}}{2 \cdot \cos^{2}\left(\frac{90^{\circ} + \varphi}{2}\right)} \quad N_{\gamma} = \frac{tg(\varphi)}{2} \left(\frac{K_{p\gamma}}{\cos^{2}(\varphi)} - 1\right) \qquad N_{c} = (N_{q} - 1) \cdot ctg(\varphi)$$

$$\sec \varphi = 0 \Rightarrow N_{c} = 1.5 \cdot \pi + 1$$

φ	0	5	10	15	20	25	30	35	40	45	50
K _{pγ}	10.8	12.2	14.7	18.6	25.0	35.0	52.0	82.0	141.0	298.0	800.0

Formulazione di Stagg-Zienkiewicz (1968)

$$N_q = tg^6 \left(\frac{90^\circ + \varphi}{2}\right) \qquad N_\gamma = N_q + 1 \qquad N_c = 5 \cdot tg^4 \left(\frac{90^\circ + \varphi}{2}\right)$$

VERIFICA A ROTTURA PER SCORRIMENTO DI FONDAZIONI SUPERFICIALI

Se il carico applicato alla base della fondazione non è normale alla stessa bisogna effettuare anche una verifica per rottura a scorrimento. Rispetto al collasso per scorrimento la resistenza offerta dal sistema fondale viene valutata come somma di due componenti: la prima derivante dall'attrito fondazione-terreno, la seconda derivante dall'adesione. In generale, oltre a queste due componenti, può essere tenuto in conto anche l'effetto della spinta passiva del terreno di ricoprimento esercita sulla fondazione fino ad un massimo del 30%. La formulazione analitica della verifica può essere esposta nel seguente modo:

$$T_{Sd} \leq T_{Rd} = N_{Sd} \cdot tg(\delta) + A_f \cdot c_a + S_p \cdot f_{Sp}$$

dove i termini dell'espressione hanno il seguente significato:

- componente orizzontale del carico agente sulla fondazione (sia lungo B che lungo L)
- N_{Sd} componente verticale del carico agente sulla fondazione

- c_a adesione fondazione-terreno (valore variabile tra il 60% e 100% della coesione)
- δ angolo d'attrito fondazione-terreno (valore variabile tra il 60% e 100% della coesione)
- S_p spinta passiva del terreno di ricoprimento della fondazione
- f_{Sp} percentuale di partecipazione della spinta passiva
- A_f superficie di contatto del piano di posa della fondazione

La verifica deve essere effettuata sia per componenti taglianti parallele alla base della fondazione che per quelle ortogonali.

DETERMINAZIONE DELLE TENSIONI INDOTTE NEL TERRENO

Ai fini del calcolo dei cedimenti è essenziale conoscere lo stato tensionale indotto nel terreno a varie profondità da un carico applicato in superficie. Tale determinazione viene eseguita ipotizzando che il terreno si comporti come un mezzo continuo, elastico-lineare, omogeneo e isotopo. Tale assunzione, utilizzata per la determinazione della variazione delle tensioni verticali dovuta all'applicazione di un carico in superficie, è confortata dalla letteratura (Morgenstern e Phukan) perché la non linearità del materiale poco influenza la distribuzione delle tensioni verticali. Per ottenere un profilo verticale di pressioni si possono utilizzare tre metodi di calcolo: quello di Boussinesq, quello di Westergaard oppure quello di Mindlin; tutti basati sulla teoria del continuo elastico. Il metodo di Westergaard differisce da quello di Boussinesq per la presenza del coefficiente di Poisson "u", quindi si adatta meglio ai terreni stratificati. Il metodo di Mindlin differisce dai primi due per la possibilità di posizionare il carico all'interno del continuo elastico mentre i primi due lo pongono esclusivamente sulla frontiera quindi si presta meglio al caso di fondazioni molto profonde. Nel caso di fondazioni poste sulla frontiera del continuo elastico il metodo di Mindlin risulta equivalente a quello di Boussinesq. Le espressioni analitiche dei tre metodi di calcolo sono:

Boussinesq
$$\Rightarrow \Delta \sigma_{v} = \frac{3 \cdot Q \cdot z^{3}}{2 \cdot \pi \cdot (r^{2} + z^{2})^{\frac{5}{2}}}$$
 Westergaard $\Rightarrow \Delta \sigma_{v} = \frac{Q}{2 \cdot \pi \cdot z^{2}} \cdot \frac{\sqrt{\frac{1 - 2 \cdot v}{2 - 2 \cdot v}}}{\left(\frac{1 - 2 \cdot v}{2 - 2 \cdot v} + \frac{r^{2}}{z^{2}}\right)^{\frac{3}{2}}}$

dove i termini dell'espressioni hanno il seguente significato:

- Q carico puntiforme applicato sulla frontiera del mezzo
- r proiezione orizzontale della distanza del punto di applicazione del carico dal punto in esame
- z proiezione verticale della distanza del punto di applicazione del carico dal punto in esame

$$\text{Mindlin} \ \Rightarrow \ \Delta \sigma_{v} = \frac{Q}{8 \cdot \pi \cdot (1 - v) \cdot D^{2}} \begin{pmatrix} -\frac{(1 - 2 \cdot v) \cdot (m - 1)}{A^{3}} + \frac{(1 - 2 \cdot v) \cdot (m - 1)}{B^{3}} - \frac{3 \cdot (m - 1)^{3}}{A^{5}} - \frac{30 \cdot m \cdot (m + 1)^{3}}{B^{7}} - \frac{3 \cdot (3 - 4 \cdot v) \cdot m \cdot (m + 1)^{2} - 3 \cdot (m + 1) \cdot (5 \cdot m - 1)}{B^{5}} \end{pmatrix}$$

$$n = \frac{r}{D}$$
; $m = \frac{z}{D}$; $A^2 = n^2 + (m-1)^2$; $B^2 = n^2 + (m+1)^2$

dove i termini dell'espressioni hanno il seguente significato:

- Q carico puntiforme applicato sulla frontiera o all'interno del mezzo
- D proiezione verticale della distanza del punto di applicazione del carico dalla frontiera del mezzo
- r proiezione orizzontale della distanza del punto di applicazione del carico dal punto in esame
- z proiezione verticale della distanza del punto di applicazione del carico dal punto in esame

Basandosi sulle ben note equazioni ricavate per un carico puntiforme, l'algoritmo implementato esegue un integrazione delle equazioni di cui sopra lungo la verticale di ogni punto notevole degli elementi fondali estesa a tutte le aree di carico presenti sulla superficie del terreno; questo consente di determinare la variazione dello stato tensionale verticale " $\Delta \sigma_{\nu}$ ". Bisogna sottolineare che, nel caso di pressione, "Q" va definito come "pressione netta", ossia la pressione in eccesso rispetto a quella geostatica esistente che può essere sopportata con sicurezza alla profondità "D" del piano di posa delle fondazioni. Questo perché i cedimenti sono causati solo da incrementi netti di pressione che si aggiungono all'esistente pressione geostatica.

CALCOLO DEI CEDIMENTI DELLA FONDAZIONE

La determinazione dei cedimenti delle fondazioni assume una rilevanza notevole per il manufatto da realizzarsi, in special modo nella fase di esercizio. Nell'evolversi della fase di cedimento il terreno passa da uno stato di sforzo corrente dovuto al peso proprio ad uno nuovo dovuto all'effetto del carico addizionale applicato. Questa variazione

dello stato tensionale produce una serie di movimenti di rotolamento e scorrimento relativo tra i granuli del terreno, nonché deformazioni elastiche e rotture delle particelle costituenti il mezzo localizzate in una limitata zona d'influenza a ridosso dell'area di carico. L'insieme di questi fenomeni costituisce il cedimento che nel caso in esame è verticale. Nonostante la frazione elastica sia modesta, l'esperienza ha dimostrato che ai fini del calcolo dei cedimenti modellare il terreno come materiale pseudoelastico permette di ottenere risultati soddisfacenti. In letteratura sono descritti diversi metodi per il calcolo dei cedimenti ma si ricorda che, qualunque sia il metodo di calcolo, la determinazione del valore del cedimento deve intendersi come la miglior stima delle deformazioni subite dal terreno da attendersi all'applicazione dei carichi. Nel seguito vengono descritte le teorie implementate:

Metodo edometrico, che si basa sulla nota relazione:

$$w_{ed} = \sum_{i=1}^{n} \frac{\Delta \sigma_{v,i}}{E_{ed,i}} \cdot \Delta z_{i}$$

dove i termini dell'espressioni hanno il seguente significato:

- $\Delta \sigma_{v,i}$ variazione dello stato tensionale verticale alla profondità "z_i" dello strato i-esimo per l'applicazione del carico
- E_{ed. i} modulo edometrico del terreno relativo allo strato i-esimo
- Δz_i spessore dello strato i-esimo

Si ricorda che questo metodo si basa sull'ipotesi edometrica quindi l'accuratezza del risultato è maggiore quando il rapporto tra lo spessore dello strato deformabile e la dimensione in pianta delle fondazioni è ridotto, tuttavia il metodo edometrico consente una buona approssimazione anche nel caso di strati deformabili di spessore notevole.

Metodo dell'elasticità, che si basa sulle note relazioni:

$$w_{\text{Imp.}} = \sum_{i=1}^{n} \frac{\Delta \sigma_{v,i}}{E_i} \cdot \Delta z_i \qquad w_{\text{Lib.}} = \sum_{i=1}^{n} \frac{\Delta \sigma_{v,i}}{E_i} \cdot \frac{1 - 2 \cdot v^2}{1 - v} \cdot \Delta z_i$$

dove i termini dell'espressioni hanno il seguente significato:

- W_{Imp.} cedimento in condizioni di deformazione laterale impedita
- W_{l ib} cedimento in condizioni di deformazione laterale libera
- $\Delta\sigma_{v,i}$ variazione stato tensionale verticale alla profondità "z_i" dello strato i-esimo per l'applicazione del carico
- E_i modulo elastico del terreno relativo allo strato i-esimo
- Δz_i spessore dello strato i-esimo

La doppia formulazione adottata consente di ottenere un intervallo di valori del cedimento elastico per la fondazione in esame (valore minimo per $w_{lmp.}$ e valore massimo per $w_{Lib.}$).

SIMBOLOGIA ADOTTATA NEI TABULATI DI CALCOLO

Per maggior chiarezza nella lettura dei tabulati di calcolo viene riportata la descrizione dei simboli principali utilizzati nella stesura degli stessi. Per comodità di lettura la legenda è suddivisa in paragrafi con la stessa modalità in cui sono stampati i tabulati di calcolo.

Dati geometrici degli elementi costituenti le fondazioni superficiali

per tipologie travi e plinti superficiali:

- Indice Strat. indice della stratigrafia associata all'elemento

- Prof. Fon. profondità del piano di posa dell'elemento a partire dal piano campagna

Base larghezza della sezione trasversale dell'elemento
 Altezza altezza della sezione trasversale dell'elemento
 Lung. Elem. dimensione dello sviluppo longitudinale dell'elemento

- Lung. Travata nel caso l'elemento appartenga ad un macroelemento, rappresenta la dimensione dello sviluppo

longitudinale del macroelemento

per tipologia platea:

Indice Strat. indice della stratigrafia associata all'elemento

Prof. Fon.
 Dia. Eq.
 profondità del piano di posa dell'elemento dal piano campagna diametro del cerchio equivalente alla superficie dell'elemento

Spessore spessore dell'elemento
 Superficie superficie dell'elemento

Vert. Elem. Numero dei vertici che costituiscono l'elemento

- Macro nel caso l'elemento appartenga ad un macroelemento, rappresenta il numero del macroelemento

Nel caso si avesse scelto di determinare la portanza anche per gli elementi platea è presente un ulteriore riga nella quale sono riportate le caratteristiche geometriche del plinto equivalente alla macro/platea in esame.

Dati di carico degli elementi costituenti le fondazioni superficiali

per tipologie travi e plinti superficiali:

Cmb numero della combinazione di carico
 Tipologia tipologia della combinazione di carico

- Sismica flag per l'applicazione della riduzione sismica alle caratteristiche meccaniche del terreno di

fondazione per la combinazione di carico in esame

Ecc. B eccentricità del carico normale agente sul piano di fondazione in direzione parallela alla sezione

trasversale dell'elemento

- Ecc. L eccentricità del carico normale agente sul piano di fondazione in direzione parallela allo sviluppo

longitudinale dell'elemento

- S.Taglio B sforzo di taglio agente sul piano di fondazione in direzione parallela alla sezione trasversale

dell'elemento

S.Taglio L sforzo di taglio agente sul piano di fondazione in direzione parallela allo sviluppo longitudinale

dell'elemento

- S.Normale carico normale agente sul piano di fondazione

T.T.min minimo valore della distribuzione tensionale di contatto tra terreno ed elemento fondale
 T.T.max massimo valore della distribuzione tensionale di contatto tra terreno ed elemento fondale

per tipologia platea:

Cmb numero della combinazione di carico
 Tipologia tipologia della combinazione di carico

- Sismica flag per l'applicazione della riduzione sismica alle caratteristiche meccaniche del terreno di

fondazione per la combinazione di carico in esame

Press. N1
 Press. N2
 Press. N3
 Press. N3
 Press. N4
 tensione di contatto tra terreno e fondazione nel vertice n° 2 dell'elemento tensione di contatto tra terreno e fondazione nel vertice n° 3 dell'elemento tensione di contatto tra terreno e fondazione nel vertice n° 4 dell'elemento

S.Taglio X sforzo di taglio agente sul piano di fondazione in direzione parallela all'asse X del riferimento

globale

- S.Taglio Y sforzo di taglio agente sul piano di fondazione in direzione parallela all'asse Y del riferimento

globale

Nel caso si avesse scelto di determinare la portanza anche per gli elementi platea è presente un ulteriore riga nella quale sono riportate le macroazioni (integrale delle azioni applicate sui singoli elementi che compongono la platea) agenti sul plinto equivalente alla macro/platea in esame.

Valori di calcolo della portanza per fondazioni superficiali

- Cmb numero della combinazione di carico

- Qlim capacità portante totale data dalla somma di Qlim q, Qlim g, Qlim c e di Qres P (nel caso in cui si

operi alle tensioni ammissibili corrisponde alla portanza ammissibile)

- Qlim q termine relativo al sovraccarico della formula trinomia per il calcolo della capacità portante (nel caso in cui si operi alle tensioni ammissibili corrisponde alla relativa parte della portanza ammissibile)

- Qlim g termine relativo alla larghezza della base di fondazione della formula trinomia per il calcolo della capacità portante (nel caso in cui si operi alle tensioni ammissibili corrisponde alla relativa parte della

portanza ammissibile)

- Qlim c termine relativo alla coesione della formula trinomia per il calcolo della capacità portante (nel caso in

cui si operi alle tensioni ammissibili corrisponde alla relativa parte della portanza ammissibile)

- Qres P termine relativo alla resistenza al punzonamento del terreno sovrastante lo strato di rottura. Diverso da zero solo nel caso di terreni stratificati dove lo strato di rottura è diverso dal primo (nel caso in cui si

operi alle tensioni ammissibili corrisponde alla relativa parte della portanza ammissibile)

- Qmax / Qlim rapporto tra il massimo valore della distribuzione tensionale di contatto tra terreno ed elemento

fondale ed il valore della capacità portante (verifica positiva se il rapporto è < 1.0).

- TBlim valore limite della resistenza a scorrimento in direzione parallela alla sezione trasversale dell'elemento - TB / TBlim rapporto tra lo sforzo di taglio agente ed il valore limite della resistenza a scorrimento in direzione

rapporto tra lo sforzo di taglio agente ed il valore limite della resistenza a scorrimento in direzione parallela alla sezione trasversale dell'elemento (verifica positiva se il rapporto è < 1.0)

- TLlim valore limite della resistenza a scorrimento in direzione parallela allo sviluppo longitudinale

dell'elemento

- TL / TLlim rapporto tra lo sforzo di taglio agente ed il valore limite della resistenza a scorrimento in direzione

parallela allo sviluppo longitudinale dell'elemento (verifica positiva se il rapporto è < 1.0)

- Sgm. Lt. tensione litostatica agente alla quota del piano di posa dell'elemento fondale

Nel caso si avesse scelto di determinare la portanza anche per gli elementi platea è presente un ulteriore riga nella quale sono riportate le verifiche di portanza del plinto equivalente alla macro/platea in esame.

Valori di calcolo dei cedimenti per fondazioni superficiali

Cmb numero della combinazione di carico e tipologia
 Nodo vertice dell'elemento in cui viene calcolato il cedimento
 Car. Netto valore del carico netto applicato sulla superficie del terreno

- Cedimento/i valore del cedimento (nel caso di calcolo di cedimenti elastici i valori riportati sono due, il primo

corrisponde al cedimento w_{lmp} , mentre il secondo al cedimento w_{Lib})

PARAMETRI DI CALCOLO

Metodi di calcolo della portanza per fondazioni superficiali:

Per terreni sciolti: VesicPer terreni lapidei: Terzaghi

Fattori utilizzati per il calcolo della portanza per fondazioni superficiali :

- Riduzione dimensioni per eccentricità: si
- Fattori di forma della fondazione: si
- Fattori di profondità del piano di posa: si
- Fattori di inclinazione del carico: si
- Fattori di punzonamento (Vesic): si
- Fattore riduzione effetto piastra (Bowles): si
- Fattore di riduzione dimensione Base equivalente platea: 20,0 %
- Fattore di riduzione dimensione Lunghezza equivalente platea: 20,0 %

Coefficienti parziali di sicurezza per Tensioni Ammissibili, SLE nel calcolo della portanza per fondazioni superficiali:

- Coeff. parziale di sicurezza Fc (statico): 2,50
- Coeff. parziale di sicurezza Fq (statico): 2,50
- Coeff. parziale di sicurezza Fg (statico): 2,50

Combinazioni di carico:

APPROCCIO PROGETTUALE TIPO 2 - Comb. (A1+M1+R3)

Coefficienti parziali di sicurezza per SLU nel calcolo della portanza per fondazioni superficiali :

I coeff. A1 risultano combinati secondo lo schema presente nella relazione di calcolo della struttura.

- Coeff. M1 per Tan φ (statico): 1
- Coeff. M1 per c' (statico): 1
- Coeff. M1 per Cu (statico): 1
- Coeff. R3 capacità portante (statico e sismico): 2,30
- Coeff. R3 scorrimento (statico e sismico): 1,10

Parametri per la verifica a scorrimento delle fondazioni superficiali:

- Fattore per l'adesione (6 < Ca < 10): 8
- Fattore per attrito terreno-fondazione (5 < Delta < 10): 7
- Frazione di spinta passiva fSp: 50,00 %
- Coeff. resistenza sulle sup. laterali: 1,30

Metodi e parametri per il calcolo dei cedimenti delle fondazioni superficiali:

- Metodo di calcolo tensioni superficiali: Boussinesq
- Modalità d'interferenza dei bulbi tensionali: Boussinesq
- Metodo di calcolo dei cedimenti del terreno: cedimenti edometrici

ARCHIVIO STRATIGRAFIE

Indice / Descrizione: 001 / Nuova stratigrafia n. 1

Numero strati: 3

Profondità falda: assente

Strato n.	Quota di riferimento	Spessore	Indice / Descrizione terreno	Attrito Neg.
1	da 0,0 a -380,0 cm	380,0 cm	002 / Argilla o argilla limosa molto cons. 1	Assente
2	da -380,0 a -580,0 cm	200,0 cm	001 / Argilla o argilla limosa consistente	Assente
3	da -580,0 a -960,0 cm	380.0 cm	003 / Argilla o argilla limosa molto cons. 2	Assente

ARCHIVIO TERRENI

Indice / Descrizione terreno: 002 / Argilla o argilla limosa molto cons. 1

Comportamento del terreno: condizione non drenata

 Peso Spec.
 P. Spec. Sat.
 Coes.non dren.
 Mod.Elast.
 Mod.Edom.
 Dens.Rel.
 Poisson
 C. Ades.

 daN/cmc
 daN/cmc
 daN/cmq
 daN/cmq
 daN/cmq
 %
 %

 1,900 E-3
 2,200 E-3
 2,000
 280,000
 200,000
 60,0
 0,300
 0,43

Indice / Descrizione terreno: 001 / Argilla o argilla limosa consistente

Comportamento del terreno: condizione non drenata

Indice / Descrizione terreno: 003 / Argilla o argilla limosa molto cons. 2

Comportamento del terreno: condizione non drenata

 Peso Spec.
 P. Spec. Sat.
 Coes.non dren.
 Mod.Elast.
 Mod.Edom.
 Dens.Rel.
 Poisson
 C. Ades.

 daN/cmc
 daN/cmc
 daN/cmq
 daN/cmq
 %
 %

 1,900 E-3
 2,200 E-3
 2,700
 378,000
 240,000
 60,0
 0,300
 0,399

DATI GEOMETRICI DEGLI ELEMENTI COSTITUENTI LE FONDAZIONI SUPERFICIALI

Elemento	Tipologia	Id.Strat.	Prof. Fon.	Dia. Eq.	Spessore	Superficie	Vertici	Macro
n.			cm	cm	cm	cm ²	n. per elem.	n.
Platea n. 1	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 2	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 3	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 4	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 5	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 6	Platea	001	80.000	57.921	40.000	2634.888	4	1
Platea n. 7	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 8	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 9	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 10	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 11	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 12	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 13	Platea	001	80.000	57.921	40.000	2634.888	4	1
Platea n. 14	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 15	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 16	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 17	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 18	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 19	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 20	Platea	001	80.000	57.921	40.000	2634.888	4	1
Platea n. 21	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 22	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 23	Platea	001	80.000	57.921	40.000	2634.888	4	1
Platea n. 24	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 25	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 26	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 27	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 28	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 29	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 30	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 31	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 32	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 33	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 34	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 35	Platea	001	80.000	57.921	40.000	2634.886	4	1
Platea n. 36	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 37	Platea	001	80.000	57.921	40.000	2634.888	4	1
Platea n. 38	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 39	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 40	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 41	Platea	001	80.000	53.479	40.000	2246.250	4	1
Platea n. 42	Platea	001	80.000	57.921	40.000	2634.887	4	1
Platea n. 43	Platea	001	80.000	52.179	40.000	2138.366	4	1
Platea n. 44	Platea	001	80.000	52.179	40.000	2138.366	4	1
Platea n. 45	Platea	001	80.000	52.179	40.000	2138.366	4	1

Platea n. 46	Platea	001	80.000	52.179	40.000	2138.366	4	1
Platea n. 47	Platea	001	80.000	52.179	40.000	2138.365	4	1
Platea n. 48	Platea	001	80.000	52.179	40.000	2138.366	4	1
Platea n. 49	Platea	001	80.000	63.143	40.000	3131.408	4	1
								-
Platea n. 50	Platea	001	80.000	63.143	40.000	3131.408	4	1
Platea n. 51	Platea	001	80.000	63.143	40.000	3131.408	4	1
Platea n. 52	Platea	001	80.000	63.143	40.000	3131.408	4	1
Platea n. 53	Platea	001	80.000	63.143	40.000	3131.408	4	1
Platea n. 54	Platea	001	80.000	63.143	40.000	3131.408	4	1
Platea n. 55	Platea	001	80.000	64.447	40.000	3262.127	4	1
Platea n. 56	Platea	001	80.000	64.448	40.000	3262.145	4	1
Platea n. 57	Platea	001	80.000	59.118	40.000	2744.925	4	1
Platea n. 58	Platea	001	80.000	59.118	40.000	2744.917	4	1
Platea n. 59	Platea	001	80.000	53.257	40.000	2227.671	4	1
Platea n. 60	Platea	001	80.000	53.257	40.000	2227.663	4	1
Platea n. 61	Platea	001	80.000	59.118	40.000	2744.925	4	1
Platea n. 62	Platea	001	80.000	59.118	40.000	2744.917	4	1
Platea n. 63	Platea	001	80.000	59.118	40.000	2744.924	4	1
Platea n. 64	Platea	001	80.000	59.118	40.000	2744.917	4	1
								-
Platea n. 65	Platea	001	80.000	59.118	40.000	2744.873	4	1
Platea n. 66	Platea	001	80.000	59.118	40.000	2744.892	4	1
Platea n. 67	Platea	001	80.000	59.118	40.000	2744.925	4	1
Platea n. 68	Platea	001	80.000	59.118	40.000	2744.917	4	1
Platea n. 69	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 70	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 71	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 72	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 73	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 74	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 75	Platea	001	80.000	52.089	40.000	2130.990	4	1
Platea n. 76	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 77	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 78	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 79	Platea	001	80.000	52.089	40.000	2130.990	4	1
Platea n. 80	Platea	001	80.000	52.089	40.000	2130.987	4	1
Platea n. 81	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 82	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 83	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 84	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 85	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 86	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 87	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 88	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 89	Platea	001	80.000	51.035	40.000	2045.585	4	1
Platea n. 90	Platea	001	80.000	51.035	40.000	2045.589	4	1
Platea n. 91	Platea	001	80.000	51.035	40.000	2045.585	4	1
Platea n. 92		001				2045.579	4	1
	Platea		80.000	51.034	40.000			
Platea n. 93	Platea	001	80.000	51.035	40.000	2045.586	4	1
Platea n. 94	Platea	001	80.000	51.035	40.000	2045.589	4	1
Platea n. 95	Platea	001	80.000	51.035	40.000	2045.586	4	1
Platea n. 96	Platea	001	80.000	51.034	40.000	2045.579	4	1
Platea n. 97	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 98	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 99	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 100	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 101	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 102	Platea	001	80.000	51.034	40.000	2045.568	4	1
Platea n. 103	Platea	001	80.000	51.034	40.000	2045.565	4	1
Platea n. 104	Platea	001	80.000	51.034	40.000	2045.569	4	1
Platea n. 105	Platea	001	80.000	52.089	40.000	2130.988	4	i
Platea n. 106	Platea	001	80.000	52.089	40.000	2130.988	4	1
Platea n. 107	Platea	001	80.000	52.089	40.000	2130.991	4	1
Platea n. 108	Platea	001	80.000	52.089	40.000	2130.988	4	1
Platea n. 109	Platea	001	80.000	52.089	40.000	2130.988	4	1
Platea n. 110	Platea	001	80.000	52.089	40.000	2130.988	4	1
Platea n. 111	Platea	001	80.000	52.089	40.000	2130.991	4	1
Platea n. 112	Platea	001	80.000	52.089	40.000	2130.988	4	1
Platea n. 113	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 114	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 115	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 116	Platea	001	80.000	54.584	40.000	2340.045	4	1
Platea n. 117	Platea	001	80.000	59.118	40.000	2744.926	4	1
Platea n. 118	Platea	001	80.000	59.118	40.000	2744.918	4	1
Platea n. 119	Platea	001	80.000	59.118	40.000	2744.873	4	1
Platea n. 120	Platea	001	80.000	59.118	40.000	2744.892	4	1
Platea n. 121	Platea	001	80.000	59.118	40.000	2744.924	4	1
Platea n. 122	Platea	001	80.000	59.118	40.000	2744.917	4	1

Macro n. 1	Macro-Platea	001	80.000	486.003	40.000	560.000	560.000	
Elemento n.	Tipologia	ld.Strat.	Prof. Fon. cm	Base Eq.	Spessore cm	Lung. Eq. cm	Lung. Travata cm	Eq.
				1 3.0/0	- 0.000	1314.020		
Platea n. 179 Platea n. 180	Platea Platea	001 001	80.000 80.000	49.373 49.373	40.000 40.000	1914.526 1914.523	4 4	1
Platea n. 178	Platea	001	80.000	50.351	40.000	1991.143	4	1
Platea n. 177	Platea	001	80.000	50.351	40.000	1991.146	4	1
Platea n. 176	Platea	001	80.000	50.351	40.000	1991.143	4	1
Platea n. 175	Platea	001	80.000	50.351	40.000	1991.146	4	1
Platea n. 174	Platea	001	80.000	49.331	40.000	1911.317	4	1
Platea n. 173	Platea	001	80.000	49.331	40.000	1911.310	4	1
Platea n. 172	Platea	001	80.000	49.331	40.000	1911.335	4	1
Platea n. 171	Platea	001	80.000	49.332	40.000	1911.348	4	1
Platea n. 170	Platea	001	80.000	49.332	40.000	1911.345	4	1
Platea n. 168 Platea n. 169	Platea Platea	001 001	80.000 80.000	49.332 49.332	40.000 40.000	1911.345 1911.349	4 4	1
Platea n. 167	Platea	001	80.000	49.332	40.000	1911.348	4	1
Platea n. 166	Platea	001	80.000	49.331	40.000	1911.336	4	1
Platea n. 165	Platea	001	80.000	49.332	40.000	1911.348	4	1
Platea n. 164	Platea	001	80.000	49.331	40.000	1911.317	4	1
Platea n. 163	Platea	001	80.000	49.331	40.000	1911.310	4	1
Platea n. 162	Platea	001	80.000	50.351	40.000	1991.143	4	1
Platea n. 161	Platea	001	80.000	50.351	40.000	1991.146	4	1
Platea n. 160	Platea	001	80.000	50.351	40.000	1991.143	4	1
Platea n. 159	Platea	001	80.000	50.351	40.000	1991.146	4	1
Platea n. 157 Platea n. 158	Platea Platea	001	80.000 80.000	49.373 49.373	40.000 40.000	1914.526 1914.523	4	1
Platea n. 156	Platea	001 001	80.000	57.969 49.373	40.000	2639.300	4 4	1
Platea n. 155	Platea	001	80.000	63.195	40.000	3136.600	4	1
Platea n. 154	Platea	001	80.000	52.223	40.000	2141.950	4	1
Platea n. 153	Platea	001	80.000	57.969	40.000	2639.301	4	1
Platea n. 152	Platea	001	80.000	57.969	40.000	2639.299	4	1
Platea n. 151	Platea	001	80.000	57.969	40.000	2639.250	4	1
Platea n. 150	Platea	001	80.000	57.969	40.000	2639.301	4	1
Platea n. 149	Platea	001	80.000	53.524	40.000	2250.000	4	1
Platea n. 148	Platea	001	80.000	53.524	40.000	2250.000	4	1
Platea n. 147	Platea	001	80.000	51.077	40.000	2048.994	4	1
Platea n. 146	Platea	001	80.000	51.077	40.000	2048.968	4	1
Platea n. 145	Platea	001	80.000	51.077	40.000	2048.996	4	1
Platea n. 144	Platea	001	80.000	51.077	40.000	2048.993	4	1
Platea n. 142 Platea n. 143	Platea Platea	001 001	80.000 80.000	63.195 57.969	40.000 40.000	3136.600 2639.300	4 4	1
Platea n. 141	Platea	001	80.000	52.223	40.000	2141.950	4	1
Platea n. 140	Platea	001	80.000	57.969	40.000	2639.301	4	1
Platea n. 139	Platea	001	80.000	57.969	40.000	2639.299	4	1
Platea n. 138	Platea	001	80.000	57.969	40.000	2639.250	4	1
Platea n. 137	Platea	001	80.000	57.969	40.000	2639.301	4	1
Platea n. 136	Platea	001	80.000	53.524	40.000	2250.000	4	1
Platea n. 135	Platea	001	80.000	53.524	40.000	2250.000	4	1
Platea n. 134	Platea	001	80.000	51.077	40.000	2048.994	4	i
Platea n. 133	Platea	001	80.000	51.077	40.000	2048.968	4	1
Platea n. 132	Platea	001	80.000	51.077	40.000	2048.996	4	1
Platea n. 131	Platea	001	80.000	51.077	40.000	2048.993	4	1
Platea n. 129 Platea n. 130	Platea Platea	001	80.000 80.000	59.118 59.118	40.000	2744.925 2744.918	4 4	1
Platea n. 128 Platea n. 129	Platea	001 001	80.000	64.448 59.118	40.000 40.000	3262.146	4	1
Platea n. 127	Platea	001	80.000	64.447	40.000	3262.127	4	1
Platea n. 126	Platea	001	80.000	53.257	40.000	2227.664	4	1
Platea n. 125	Platea	001	80.000	53.257	40.000	2227.671	4	1
Platea n. 124	Platea	001	80.000	59.118	40.000	2744.918	4	1
Platea n. 123	Platea	001	80.000	59.118	40.000	2744.926	4	1

VALORI DI CALCOLO DELLA PORTANZA PER FONDAZIONI SUPERFICIALI

I coeff. A1 risultano combinati secondo lo schema presente nella relazione di calcolo della struttura. Le azioni trasmesse in fondazione, relative alle combinazioni di tipo sismico, non saranno amplificate in quanto determinate ipotizzando un comportamento non dissipativo.

La verifica nei confronti dello Stato Limite di Danno viene eseguita determinando il carico limite della fondazione per le corrispondenti azioni di SLD, impiegando i coefficienti parziali gammaR di cui alla tabella 7.11.II.

N.B. La relazione è redatta in forma sintetica. Verranno riportati solo i casi maggiormente gravosi per ogni tipo di combinazione e le relative verifiche.

Macro platea: 1

Risultati più gravosi per cmb. di tipo SLU STR:

Sgm. Lt (tens. litostatica) = -0.1520 daN/cm²

Qlim = Qlim c + Qlim q + Qlim g + Qres P = 5.5807 + 0.0661 + 0.0000 + 0.0000

Sollecitazioni:

Cmb	Tipo	Sism.	Ecc. B	Ecc. L	S. Taglio B	S. Taglio L	S. Normale	T.T. min	T.T. max
n.			cm	cm	daN	daN	daN	daN/cm ²	daN/cm ²
003	SLU STR	No	48.821	-26.667	-2214.5	0.0	-49106.7	-0.0312	-0.1946
006	SLU STR	No	-0.171	17.658	0.0	-2348.3	-48972.0	-0.0958	-0.1339

VALORI DI CALCOLO DEI CEDIMENTI PER FONDAZIONI SUPERFICIALI

I cedimenti della platea sono stati calcolati applicando una combinazione agli SLE rara applicando tutti i coefficienti parziali pari a 1. Si nota che i cedimenti risultano nulli in quanto la pressione indotta dal carico della fondazione risulta inferiore rispetto alla pressione litostatica del terreno alla quota di posa della fondazione (D=-80 m da p.c.). Inoltre si riportano sotto anche i risultati dei cedimenti, ipotizzando il piano di posa alla quota del p.c.

Risultati ottenuti alla reale quota di posa : D = -80m da p.c.

Elemento: Platea n. 1

Sollecitazioni:

Cmb	Tipo	Sism.	Ecc. B	Ecc. L	S. Taglio B	S. Taglio L	S. Normale	T.T. min	T.T. max
n.			cm	cm	daN	daN	daN	daN/cm ²	daN/cm ²
001	SLE rare	No	4.337	-10.004	2276.1	2308.2	-51748.5	-0.1066	-0.1369
003	SLE rare	No	63.527	-24.026	-2214.5	0.0	-37738.6	-0.0130	-0.1604
Cedin	nento massin	10 = 0.000	cm in Cmb n. (003					

Cedimento minimo = 0.000 cm in Cmb n. 001

Risultati ottenuti alla quota di posa : D = 0m da p.c.

Elemento: Platea n. 1

Sollecitazioni:

Cmb	Tipo	Sism.	Ecc. B	Ecc. L	S. Taglio B	S. Taglio L	S. Normale	T.T. min	T.T. max
n.			cm	cm	daN	daN	daN	daN/cm ²	daN/cm ²
001	SLE rare	No	4.337	-10.004	2276.1	2308.2	-51748.5	-0.1066	-0.1369
003	SLE rare	No	63.527	-24.026	-2214.5	0.0	-37738.6	-0.0131	-0.1605
Codir	nanto maccin	no – -0 184	cm in Cmh n	001					

Cedimento minimo = -0.184 cm in Cmb n. 003

Dai risultati della seconda ipotesi, più a favore di sicurezza, in quanto non considera il carico del terreno asportato, si evince che i cedimenti risultano molto ridotti ed accettabili per la sovrastruttura.

6.3. ES RELAZIONE SULLA CARATTERIZZAZIONE MECCANICA DEI MATERIALI

Non pertinente in quanto trattasi di nuova costruzione.

6.4. RELAZIONE SULLA MODELLAZIONE SISMICA CONCERNENTE "LA PERICOLOSITA" SISMICA DI BASE" DEL SITO DI COSTRUZIONE

Si rimanda alla relazione della sovrastruttura.

7. ELABORATI GRAFICI DEL RILIEVO GEOMETRICO-STRUTTURALE

7.1. ES RILIEVO GEOMETRICO-STRUTTURALE

Non pertinente in quanto trattasi di nuova costruzione

7.2. ES QUADRO FESSURATIVO E/O DI DEGRADO

Non pertinente in quanto trattasi di nuova costruzione

8. VALUTAZIONE DELLA SICUREZZA

8.1. ES ANALISI STORICO-CRITICA ED ESITO DEL RILIEVO GEOMETRICO-STRUTTURALE

8.1.1. ANALISI STORICO-CRITICA

Non pertinente in quanto trattasi di nuova costruzione.

8.1.2. ESITO DEL RILIEVO GEOMETRICO-STRUTTURALE

Non pertinente in quanto trattasi di nuova costruzione.

8.2. ES LIVELLI DI CONOSCENZA E FATTORI DI CONFIDENZA

Non pertinente in quanto trattasi di nuova costruzione.

8.3. ES RELAZIONE SULLA VERIFICA DELLA STRUTTURA PRIMA DELL'INTERVENTO

Non pertinente in quanto trattasi di nuova costruzione.

8.4. ES RELAZIONE SULLA VERIFICA DELLA STRUTTURA DOPO L'INTERVENTO

Non pertinente in quanto trattasi di nuova costruzione.

9. DOCUMENTAZIONE FOTOGRAFICA

Non pertinente in quanto trattasi di nuova costruzione.

Vignola, Febbraio 2019

